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I have not found anything in Lobatchevski's
work that is new to me, but the development is
made in a different way from the way I had
started and to be sure masterfully done by Lo-
batchevski in the pure spirit of geometry.

- letter from Gauss to Schumacher (1846)



Preface

In recent years, I have been teaching a junior-senior-level course on the classi-
cal geometries. This book has grown out of that teaching experience. I assume
only high-school geometry and some abstract algebra. The course begins in
Chapter 1 with a critical examination of Euclid’'s Elements. Students are expected
to read concurrently Books I-IV of Euclid’s text, which must be obtained sepa-
rately. The remainder of the book is an exploration of questions that arise natu-
rally from this reading, together with their modern answers. To shore up the
foundations we use Hilbert's axioms. The Cartesian plane over a field provides
an analytic model of the theory, and conversely, we see that one can introduce
coordinates into an abstract geometry. The theory of area is analyzed by cutting
figures into triangles. The algebra of field extensions provides a method for
deciding which geometrical constructions are possible. The investigation of the
parallel postulate leads to the various non-Euclidean geometries. And in the last
chapter we provide what is missing from Euclid’s treatment of the five Platonic
solids in Book XIII of the Elements.

For a one-semester course such as I teach, Chapters 1 and 2 form the core
material, which takes six to eight weeks. Then, depending on the taste of the in-
structor, one can follow a more geometric path by going directly to non-Euclidean
geometry in Chapter 7, or a more algebraic one, exploring the relation between
geometric constructions and field extensions, by doing Chapters 3, 4, and 6. For
me, one of the most interesting topics is the introduction of coordinates into an
abstractly given geometry, which is done for a Euclidean plane in Section 21,
and for a hyperbolic plane in Section 41.

Throughout this book, I have attempted to choose topics that are accessible
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to undergraduates and that are interesting in their own right. The exercises are
meant to be challenging, to stimulate a sense of curiosity and discovery in the
student. I purposely do not indicate their difficulty, which varies widely.

I hope this material will become familiar to every student of mathematics,
and in particular to those who will be future teachers.

I owe thanks to Marvin Greenberg for reading and commenting on large
portions of the text, to Hendrik Lenstra for always having an answer to my
questions, and to Victor Pambuccian for valuable references to the literature.
Thanks to Faye Yeager for her patient typing and retyping of the manuscript.
And special thanks to my wife, Edie, for her continual loving support.

Of all the works of antiquity which have
been transmitted to the present times, none are
more universally and deservedly esteemed than
the Elements of Geometry which go under the
name of Euclid. In many other branches of
science the moderns have far surpassed their
masters; but, after a lapse of more than two
thousand years, this performance still maintains
its original preeminence, and has even acquired
additonal celebrity from the fruitless attempts
which have been made to establish a different
system.

- from the preface to
Bonnycastle’s Euclid
London (1798)
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Introduction

little after the time of Plato, but before Archimedes, in
ancient Greece, a man named Euclid wrote the Ele-
ments, gathering and improving the work of his pre-
decessors Pythagoras, Theaetetus, and Eudoxus into
one magnificent edifice. This book soon became the
standard for geometry in the classical world. With the
decline of the great civilizations of Athens and Rome, it
moved eastward to the center of Arabic learning in the
court of the caliphs at Baghdad.

In the late Middle Ages it was translated from Arabic into Latin, and since
the Renaissance it not only has been the most widely used textbook in the
world, but has had an influence as a model of scientific thought that extends
way beyond the confines of geometry. As Billingsley said in his preface to the
first English translation (1570), “Without the diligent studie of Euclides Ele-
mentes, it is impossible to attaine unto the perfecte knowledge of Geometrie, and
consequently of any of the other Mathematical Sciences.” Even today, though
few schools use the original text of Euclid, the content of a typical high-school
geometry course is the same as what Euclid taught more than two thousand
three hundred years ago.

In this book we will take Euclid’'s Elements as the starting point for a study of
geometry from a modern mathematical perspective.

To begin, we will become familiar with the content of Euclid's work, at least
those parts that deal with geometry (Books I-1V, VI, and XI-XIII). Here we find
theorems that should be familiar to anyone who has had a course of high-school
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2, Introduction

geometry, such as the fact (1.4) that two triangles are congruent if they have two
sides and the included angle equal, or the fact (111.21) that a given arc of a circle
subtends the same angle at any point of the circle from which it is seen.
(Throughout this book, references such as (1.4) or (II1.21) refer to the corre-
sponding Book and Proposition number in Euclid's Elements.)

Many of Euclid’s propositions pose construction problems, such as (1.1), to
construct an equilateral triangle, or (IV.11), to construct a regular pentagon
inscribed in a circle. Euclid means to construct the required figure using only
the ruler, which can draw a straight line through two points, and the compass,
which can draw a circle with given center and given radius. These ruler and
compass constructions are often taught in high-school geometry. Note that
Euclid casts these problems in the form of constructions, whereas a modern
mathematician would be more likely to speak of proving the existence of the
required figure.

At a second level, we will study the logical structure of Euclid’s presentation.
Euclid’'s Elements has been regarded for more than two thousand years as the
prime example of the axiomatic method. Starting from a small number of
self-evident truths, called postulates, or common notions, he deduces all the
succeeding results by purely logical reasoning. Euclid thus begins with the sim-
plest assumptions, such as Postulate 1, to draw a line through any two given
points, or Postulate 3, to draw a circle with given center and radius. He then
proceeds step by step to the culmination of the work in Book XIII, where he
gives the construction of the five regular solids: the tetrahedron, the cube, the
octahedron, the icosahedron, and the dodecahedron.

Upon closer reading, we find that Euclid does not adhere to the strict axiom-
atic method as closely as one might hope. Certain steps in certain proofs depend
on assumptions that, however reasonable or intuitively clear they may seem,
cannot be justified on the basis of the stated postulates and common notions. So,
for example, the fact that the two circles in the proof of (I.1) will actually meet
at some point seems obvious, but is not proved. The method of superposition
used in the proof of (1.4), which allows one to move the triangle ABC so that it
lies on top of the triangle DEF, cannot be justified from the axioms. Also, various
assumptions about the relative position of figures in the plane, such as which
point lies between the others, or which ray lies in the interior of a given angle,
are used without any previous clarification of what such notions should mean.

These lapses in Euclid’s logic lead us to the task of disengaging those implicit
assumptions that are used in his arguments and providing a new set of axioms
from which we can develop geometry according to modern standards of rigor.
The logical foundations of geometry were widely studied in the late nineteenth
century, which led to a set of axioms proposed by Hilbert in his lectures on the
foundations of geometry in 1899. We will examine Hilbert's axioms, and we will
see how these axioms can be used to build a solid base from which to develop
Euclid’s geometry pretty much according to the logical plan that he first laid out.
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We will also cultivate an awareness of what additional axioms may be required
for certain portions of the theory.

Our third level of reading Euclid’'s Elements involves rather broader inves-
tigations than the first two levels mentioned above: We will consider various
mathematical questions and subsequent developments that arise naturally from
Euclid’s presentation.

For example, the modern reader quickly becomes aware that Euclid does not
use numbers in his geometry. He speaks of equality of line segments, and a
notion of one segment being added to another to form a third segment, but he
does not mention the length of a line segment. When it comes to area (1.35ff.),
though Euclid does not say explicitly what he means by equality of area, we can
infer from his proofs that he means a notion generated by cutting figures in
pieces and adding or subtracting congruent figures. He does not use any number
to measure the area of a triangle. So we may note with surprise that the famous
Pythagorean theorem (1.47) does not state that the square of the length of the
hypotenuse (a number) is equal to the sum of the squares of the lengths of the
two sides of a right triangle; rather, it says that the area of a square built on
the hypotenuse is equal to the area formed by the union of the two squares built
on the sides.

The absence of numbers may seem curious to a student educated in an era
in which the real numbers are all-powerful, when an interval is measured by its
length (which is a real number), and an area by a certain integral (another real
number). In fact some modern educators have gone so far as to build the real
numbers into the axioms for geometry with the “ruler postulate,” which says
that to each interval is assigned a real number, its length, and that two intervals
are congruent if they have the same length. However, this use of the real num-
bers at the foundational level of geometry is far from the spirit of Euclid.

So we may ask, what role do numbers play in the development of geometry?
As one approach to this question we can take the modern algebraic structure of
a field (which could be the real numbers, for example), and show that the Car-
tesian plane formed of ordered pairs of elements of the field forms a geometry
satisfying our axioms. But a deeper investigation shows that the notion of num-
ber appears intrinsically in our geometry, since we can define purely geometri-
cally an arithmetic of line segments. We will show that (up to congruence)
one can add two segments to get another segment, and one can multiply two
segments (once a unit segment has been chosen) to get another segment. These
operations satisfy the usual associative, commutative, and distributive laws, so
that we obtain an ordered field, whose positive elements are the congruence
equivalence classes of line segments.

Thus we establish a connection between the abstract geometry based on
axioms and the methods of modern algebra.

I would like to emphasize throughout this course how methods of modern
algebra help to understand classical geometry and its associated problems.



4 Introduction

For example, in the theory of area, one can formalize Euclid’s notion of
equality based on adding and subtracting congruent figures. However, we do not
know any purely geometric proof that this theory of area is nontrivial, so that,
for example, one figure properly contained in another will have a smaller area.
Euclid just cites Common Notion 5, “the whole is greater than the part.” But
unless we are willing to accept this as an axiom, we should give a proof. Such
a proof can be provided using algebraic arguments in the field of segment
arithmetic.

Concerning ruler and compass constructions, algebraic methods have led to
notable results. For example, Gauss made an extraordinary discovery in 1796,
when he used roots of unity to show that it is possible to construct a regular 17-
sided polygon—the first new polygon construction since Euclid’'s constructions
of the pentagon, hexagon, decagon, and quindecagon. On the other hand, field
theory, in particular the Galois theory of finite field extensions of @, has pro-
vided proofs of the impossibility of certain ruler and compass constructions such
as the regular 7-sided polygon, the trisection of the angle, or the doubling of the
cube. For in the algebraic interpretation, one can construct with ruler and com-
pass only those points whose coordinates lie in successive quadratic extensions
of @, while the three problems just mentioned require the solution of cubic
equations. We will see, however, that these three problems can be solved if one
allows the use of a marked ruler. In fact, constructions using the marked ruler,
in addition to ordinary straightedge and compass, correspond exactly to the solu-
tion of equations of degrees three and four.

Euclid bases his treatment of similar triangles (Book VI) on a complicated
theory of proportion (developed in Book V) where ratios of given quantities are
compared by seeing whether arbitrary rational multiples of the one exceed or
fall short of the other. This method foreshadows Dedekind’s nineteenth-century
definition of a real number as a division (“Dedekind cut”) of the rational num-
bers into two subsets, namely those greater than and those less than the
given real number. The theory of proportion depends on Archimedes’ axiom,
which states that given any two segments there is an integer multiple of the
first that will exceed the second. Using the field of segment arithmetic men-
tioned above we can give (following Hilbert) an alternative development of the
theory of similar triangles that is simpler and does not depend on Archimedes'
axiom.

In developing the theory of volume of three-dimensional figures in Books XI
and XII, Euclid abandons, remarkably, the finite dissection methods used for the
area of plane figures. Instead, he applies the “method of exhaustion” attributed
to Eudoxus, which suggests the limiting process used to define the Riemann
integral. Gauss (1844) expressed his regret that such an infinite method should
be used for something so apparently elementary as the volume of a triangular
pyramid (XI1.5). Hilbert, in his famous list of problems stated in 1900, asked
whether this infinite limiting process was really necessary, and Dehn in the
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same year provided an answer by showing that a pyramid cannot be dissected
into a finite number of pieces and reassembled into a cube. In Dehn's proof,
abstract algebra again provides a solution to a geometric problem.

While discussing the foundational and theoretical questions mentioned above,
we also have a practical side to this course. We make a point of carrying out many
ruler and compass constructions, for example, Euclid's elegant construction of
the regular pentagon (IV.11), and carefully counting our steps to heighten aware-
ness of the process. At the same time we will find explicit expressions for various
lengths constructed using nested square roots to emphasize the connection with
field extensions of Q. When studying area, we will make explicit dissections of
figures to show equality, such as for the Pythagorean theorem (1.47) or Dudeney’s
brilliant dissection in four pieces of an equilateral triangle into a square. When we
come to Euclid’'s construction of the five regular solids, we will make models of
these, and we will also explore the thirteen Archimedean solids and the other
“face-regular” convex polyhedra made of regular polygons.

Also on the practical side, we will study results that belong to the domain of
“Euclidean geometry” although they do not appear in Euclid's Elements. Some of
these were discovered long ago, such as the fact that the three altitudes of a tri-
angle meet in a point, which was known to Archimedes, while others were
found more recently, such as the Euler line and the nine-point circle associated
to a triangle. The technique of circular inversion, which became popular in the
second quarter of the nineteenth century, provides an example of the modern
transformational approach to geometry, and gives a convenient tool for the
solution of classical problems such as the problem of Apollonius: to find a circle
tangent to three given circles.

Finally, the investigation of the role of the parallel postulate has led to some
of the most important developments arising out of Euclid’'s geometry. Already
from the time of Euclid onward, commentators noted that this postulate was less
elementary than the others, and they questioned whether it might not be a con-
sequence of the other postulates. Two millennia of efforts to prove the parallel
postulate by showing that its negation led to absurd (but not contradictory) results
were considered failures until, in the mid-nineteenth century, a brilliant shift of
perspective, with lasting consequences for the history of mathematics, admitted
that these “absurd” conclusions were merely the first theorems in a new, strange,
but otherwise consistent geometry. Thus were born the various non-Euclidean
geometries that have been so valuable in the modern theory of topological
manifolds, and in the development of Einstein's theory of relativity, to mention
just two applications. In this course we will discuss the beginnings of neutral
geometry, assuming no parallel axiom. We give an analytic model of non-
Euclidean geometry over a field due to Poincaré. Then we give an axiomatic
treatment of hyperbolic geometry based on the axiom of existence of limit-
ing parallel lines. The two approaches are brought together by constructing an
abstract field out of the geometry, and showing that any abstract hyperbolic
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plane is isomorphic to the Poincaré model over its associated field. Once again,
algebraic methods help us to understand geometry.

A note on references: Propositions in Euclid’s Elements are given by book and
number, e.g., (1.47). Hilbert's axioms are given by initial and number, e.g., (11)-
(13) are the axioms of incidence. Books and articles are given by author and year,
e.g., Hilbert (1971), and listed in the References at the end of the book. Internal
references are given by section and number, e.g., (5.9) or (18.4.3). Exercises are
labeled, e.g., Exercise 4.5. An exception to this system is that within the exercises,
results of the main text are indicated by their full title, e.g., Proposition 20.10.

A note on diagrams: Most of the diagrams in this book are drawn by hand, in
keeping with the spirit of elementary geometry. I hope you will also draw your
own diagrams as you read.

As lines, so Loves oblique may well
Themselves in every Angle greet:
But ours so truly Parallel,
Though infinite can never meet.

- from The Definition of Love
by Andrew Marvell (1621-1678)



Euclid's Geometry

CHAPTER

n this chapter we create a common experience by
reading portions of Euclid's Elements. We discuss the
nature of proof in geometry. We introduce a particular
way of recording ruler and compass constructions so
that we can measure their complexity. We discuss
what are presumably familiar notions from high school
geometry as it is taught today. And then we present
Euclid’s construction of the regular pentagon and dis-
5 : cuss its proof.
Throughout this chapter proofs are informal. We do not presuppose any
particular knowledge, and yet we assume familiarity with everything in high-
school geometry. The purpose of this chapter is to create a common base and
language with which to begin our more formal study of geometry in the follow-
ing chapters.

In the last section of this chapter we present some newer results that do not
appear in Euclid's Elements but nevertheless belong to the subject of “Euclidean
geometry.”

Note: Reading this chapter should be concurrent with reading Euclid’'s Elements
Books I-1V, so as to understand all proofs and constructions. Exercises given
here will reinforce this reading.



8 1. Euclid’s Geometry

1 A First Look at Euclid’s Elements

When we first open Euclid’s Elements to

see what is in this famous book, we find

familiar facts about the geometry of

lines, triangles, and circles in the plane.

I say familiar, because almost every

elementary or high-school curriculum

has some geometry in it, and what has

been taught for thousands of years and AN
still is commonly taught as “geometry”

is material from Euclid’s Elements.

We find, for example, that a triangle is called isosceles if two of its sides are
equal, and in that case it follows (1.5) that the two base angles of the triangle are
also equal.

We find the theorem (1.32) that says that the sum of the three angles of a
triangle is 180°: o + f# + y = 180°. However, we note that Euclid does not use de-
gree measure for angles. Instead he says that the sum of the angles of a triangle
is equal to two right angles.

We find the famous “Pythagorean
theorem” (1.47), which says that in a
right triangle the sum of the squares of
the legs is equal to the square of the
hypotenuse:

a* +b* =c?. b

We note, however, that Euclid does not
use algebraic notation to express this o
result. Instead, he shows that the area

of the square on the hypotenuse is

equal to the combined area of the

squares on the two sides.

In Book III, which deals with circles,
we find the result (I11.21), which I hope
will be familiar to most readers, that an
arc of a circle subtends the same angle
at different points of the circle from
which it is viewed.

Then in Book VI, which deals with
similar triangles and the theory of pro-
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portion, we find the familiar result
(VI.2) that a line parallel to the base of a
triangle will cut the sides proportion- 5
ately, namely, a: b =c: d. y N

Euclid’s Elements, written circa 300 B.c. is a systematic account of the geom-
etry and number theory of his time. What is remarkable is that these same
propositions still form the basis of teaching geometry today.

Historically speaking, most of these results were known long before Euclid.
Within the realm of Greek mathematics, the theorem on isosceles triangles is
attributed to Thales, and the theorem on the sum of the angles of a triangle and
the theorem on the sides of a right triangle are attributed to Pythagoras. Both
men lived three hundred years before Euclid.

Eves (1953) points out that before
the Greeks, the theorem of Pythagoras
was known to the ancient Babylonians
(1900-1600 B.c.). Also, there are reports s 3
that the ancient Egyptians used a rope
knotted in twelve equal segments, which
could be stretched out to form a triangle
with sides 3, 4, 5, to construct right —
angles for laying out fields. Y

The great contribution of Euclid, for which he is justly renowned, is that he
organized the geometrical knowledge of his time into a coherent logical frame-
work, whereby each result could be deduced from those preceding it, starting
with only a small number of “postulates” regarded as self-evident.

To appreciate Euclid’'s achievement, let us try to put this in perspective.

The most naive approach to geometry is to regard it as a collection of facts,
or truths, about the real world. Ancient geometry began as a set of useful rules
for measuring fields, laying out cities, building buildings, or constructing altars.

By the time of Euclid, we can detect two important changes in the percep-
tion of geometry.

One concerns the nature of geometrical truth. There is a distinction between
the real world with all its imperfections, and some kind of abstract or ideal exis-
tence that people in this world strive to attain. This point of view is evident in
the writings of Plato, who was born about one hundred years before Euclid.
Speaking of the geometers, he says (near the end of Book VI of The Republic):

P
o

L.
e

Although they make use of the visible forms and reason about them, they are not
thinking of these, but of the ideals which they resemble; not the figures which
they draw, but of the absolute square and the absolute diameter, and so on.. ..
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Thus geometry is elevated from the status of a practical science to the study of
relationships in this ideal existence, with a consequent shift of emphasis to the
mathematically exact solution of a problem as opposed to an accurate approxi-
mate solution that would be sufficient for practical purposes. Because geometry
engages the mind in contemplation of these ideal relationships, Plato also rec-
ognizes its value in education, for we find a little later (Republic, Book VII) the
following exchange:

The knowledge at which geometry aims is knowledge of the eternal, and not of
ought perishing and transient.

That, he replied, may be readily allowed, and is true.

Then, my noble friend, geometry will draw the soul toward truth, and create
the spirit of philosophy; and raise up that which is now unhappily allowed to fall
down.

Nothing will be more likely to have such an effect.

Then nothing should be more sternly laid down than that the inhabitants of
your fair city should by all means learn geometry.

Euclid’'s geometry is the geometry of this ideal world in the sense of Plato,
with its emphasis on exact relationships. In this sense it can be regarded as
abstract mathematics. From the point of view of the modern mathematician,
however, Euclid’'s geometry is still tied to the real world because it concerns the
unique ideal world of Plato’s philosophy of which the real world is a reflection.
For example, Euclid does not hesitate to use arguments from time to time (we
will look at specific cases later) that seem perfectly acceptable in view of our
experience of the real world, yet are not logical consequences of his initial
assumptions.

The modern mathematician goes one step further, by trying to make all as-
sumptions explicit and create a consistent mathematical structure that no
longer derives its validity from the real world. The ‘“truth” of a particular result
in the real world is then no longer relevant. The only question is whether that
result is consistent with or can be logically deduced from the assumptions of this
particular theory. The modern point of view allows for many different equally
valid abstract mathematical theories, whereas for Euclid there was only one
geometry.

Euclid’s Elements also differs from the perspective of naive geometry in its
emphasis on proofs. It is no longer sufficient to say such-and-such is true, or
even to give many instances where its truth is evident. The Greeks since Pytha-
goras had been concerned with justifying their geometrical results, and Euclid’s
Elements is the ultimate expression of this trend, where all the propositions are
proved in one grand logical sequence.

So what exactly is a proof?
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The answer to this question depends A
on the context. Suppose, for example,
we are discussing one of those famous
hard problems that circulate informally
among amateurs, such as the following:
Let ABC be a triangle. Let BD and CE be
the angle bisectors at B and C. Suppose
that BD is equal to CE. Then show that
the triangle ABC is isosceles. This state-
ment is eminently reasonable, but a
proof using the usual methods of high- B < > C
school geometry is surprisingly elusive.

With a hard problem like this, most people would accept as proof any dem-
onstration of its truth based on well-known results that can be found in books,
whether the methods used were from geometry, trigonometry, analytic geome-
try, or even calculus. A purist might increase the difficulty of the problem by
insisting on a purely geometric solution. Among experienced mathematicians,
there would be little disagreement about what constituted a valid proof, once it
was found.

In another context, a proof can be characterized simply as a convincing argu-
ment. Suppose you are explaining a result to another person who has a similar
general background, but who has not seen this particular result. For example, I
wish to inscribe a hexagon with six equal sides in a circle with center O.

I choose a point A on the circle, and
with my compass centered at A, and
radius AO, I mark off a point B on the c B
circumference. Then with center B and
radius BO I mark off another point C on
the circumference. I repeat this process,
always with radius equal to the radius of . A
the original circle, to get further points P
D, E, and F. Then I draw AB, BC, CD,

DE, EF, all of which have the same

length, equal to OA, by construction. I

claim that FA also has the same length, >
so that ABCDEF will be an equilateral 3

hexagon inscribed in the circle.

Why does this work? How would you explain this so as to convince another
person? To get a real-life answer, 1 put this question to my seventeen-year-old
son, then a high school senior. His first response was, “I have done it myself, so
I know it works.” “Yes,” I said, “from a practical point of view it works. But how
do you know this is an exact solution and not just a very good approximation?”

F
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After a few minutes of thought he c B

drew the lines from Oto A, B, C, D, E, F,

and then explained that OAB is an equi-

lateral triangle by construction. There-

fore, the angle / AOB at the center is 0 ¢
60°. The same is true for the next four 7 T )
triangles BOC,...,EOF. Thus we have

five 60° angles, so the remaining angle

/. AOF must also be 60°. Then the tri-

angle AOF having two sides the same

and the same central angles must be E F
the same as the triangle AOB, and so
FA = AB.

“Fine,” 1 said, “that is very convincing, assuming that your listener knows
that the angles of an equilateral triangle are 60°, and the angle of one total revo-
lution is 360°. It seems your listener would have to know the theorem that the
sum of the three angles of a triangle is 180°. What if he asked you to explain why
that is true?”

I mentioned a proof of the sum of
the angles by drawing a line parallel to
one side AB of a triangle through the
third vertex C. Then « = «’ because of
the parallel lines, and f# = ' because of
the parallel lines, so a+f+y=0o'+
B +7y=180° because it is a straight
angle. “But then you have to know the-
orems about the angles formed when ©
a line cuts two parallel lines.” There
ensued a discussion about proliferation
of questions, like the endless “why"s of a
three-year-old, and the danger of getting into circular arguments.

So we see that while the notion of proof as a convincing argument may work
well, it depends on who your listener is, and is also subject to the danger of infi-
nite regress if your listener is uncooperative. (At this point you might like to
look at (IV.15) to see how Euclid solves this same problem.)

A third and much stricter notion of proof applies to the writer of a mathe-
matical treatise such as Euclid’s Elements. A proof must deduce the result in
question by a series of logical steps based only on those results that have already
been proved earlier in the book, and on those definitions, postulates, and com-
mon notions that have been set out as self-evident at the beginning and that
form the starting point for the logical chain of deductions. Even this notion of
proof is not absolute, however, because what constitutes an acceptable proof
for a given result will depend on where that result is situated in the logical
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sequence. So for example, Proclus says that Euclid devised an entirely new
proof of the theorem of Pythagoras (1.47). We can infer that he had to do so,
because he placed it at the end of Book I and therefore could not use the well-
known proof by similar triangles (cf. (20.6)), (which was most likely the method
used by Pythagoras), since similar triangles do not appear until Book VI.

It is for this logical structure, perhaps even more than for its mathematical
content, that Euclid's Elements is famous. The axiomatic method of sequential
logical deduction, starting from a small number of initial definitions and assump-
tions, has become the basic structure of all subsequent mathematics. Euclid’s
Elements is the first great example of this method. The importance of the axio-
matic method in modern times was emphasized at the turn of the century by
David Hilbert, whose work we will study later in this book.

And now, dear reader, it is time for you to open your copy of Euclid and
start reading. Abraham Lincoln, speaking of his scanty formal education, says
“He studied and nearly mastered the six books of Euclid since he was a member
of Congress.” You need not go so far as that, but I do urge you to read at least as
much as is suggested in the exercises below.

A Note on the Exercises in This Book

One of my students, in an essay discussing the suitability of Euclid's Elements as
a text for teaching geometry today, suggested that it would be better to use no
text at all, so that students could have the excitement of rediscovering geometry
for themselves. If we lived in ancient Athens, when the study of geometry was
synonymous with reading Euclid’'s Elements, then I would agree. But we do not
live in ancient Athens, and mathematics, including geometry, has developed a
great deal since the time of Euclid.

So I propose instead that we take Euclid’'s Elements as a starting point, a
touchstone to provoke questions and further investigation, and that we set out to
rediscover modern mathematics for ourselves.

My philosophy of mathematics is that you learn by doing. To study mathe-
matics is to do mathematics, not just to learn what other people have done.
Many of the results in this book I discovered myself. In almost all cases I
learned later that others had discovered them before me, but still T had the
pleasure of exploring new territory. As Descartes (1637) says at one point in
La Geométrie,

But I will not stop to explain this in more detail, because I would deprive you of
the pleasure of learning it yourself, and the utility of cultivating your spirit by the
exercise, which in my opinion is the principal benefit one can draw from this
science.

Therefore, the exercises in this book are designed (to the best of my ability)
to stimulate mathematical activity. There are very few routine exercises. Most
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require some puzzling, some experimentation. Many offer a challenge of expo-
sition: Once you understand what is happening, how do you explain it clearly in
writing? Many allow room for creativity. There may be several ways to give a
correct proof or a correct construction. In fact, one of the pleasures of teaching
this material has been to see the multitude of imaginative methods with which
students have solved the more open-ended problems. I encourage students to
work together in groups, to share ideas, and to defend to each other the solu-
tions they have found.

So perhaps the best way to use this book is to treat it as no-text. Go directly to
the exercises and start to work, collecting terminology and hints from the main
text only as needed!

Exercises

1.1 See what you can remember from high-school geometry. Make a list of definitions
and theorems. Do you remember the “side-angle-side” criterion for congruent tri-
angles? Could you prove it? Can you prove that the three angle bisectors of a tri-
angle meet in a point? Can you prove that the three altitudes of a triangle meet in
a point? Do you remember the definition of similar triangles and facts about them?

1.2 Read Euclid's Elements, Book 1, Propositions 1-34. Be prepared to explain the state-
ments and present the proofs of (1.4), (1.5), (1.8), (1.15), (1.26), (1.27), (1.29), (1.30),
and (1.32).

1.3 Discuss the structure of Euclid's proofs.

(a) Proclus describes six parts of a theorem (see Heath (1926), pp. 129f.): the enun-
ciation, which states what is given and what is sought, the exposition, which says
again what is given, often in a more specific form; the specification, which makes
clear what is sought; the construction, which adds what is needed; the proof, which
infers deductively what is sought from what has been previously demonstrated; and
the conclusion, which confirms what has been proved. Identify these parts (some of
which may be missing) in (1.1), (I1.4), and (L.5).

(b) Discuss Euclid's habit of presenting only one case of a proposition and leaving
the others to the reader. For example, in (1.7) what other cases should we consider,
and how would you complete the proof in those other cases?

(c) Discuss the method of reductio ad absurdum (arguing to an absurdity) as a
method of proof. How does this work in (1.6)? Can you think of a direct proof of this
result (i.e., without assuming the contrary)?

For the following Exercises 1.4-1.10, present proofs in the style of Euclid, using any
results you like from Book I, 1-34 (excluding the theory of area, which starts with (1.35)).
Be sure to refer to Euclid’s definitions, postulates, common notions, and propositions by
number whenever you use one.
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PROP. VIL TH. IV.
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/ |
A BA  RBA B

point c. Je dis que des mémes. extremitez A & B,& de
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tes ¢gales aicelles A c & Bc chacune a la fiennc, qui {e renw
contrent 2 unautre point que ¢ ceft a dire que fi de I'extre~
mité & onmenelaligne Ap égaled ac,& de l'extremicé g
laligne 1 égaled sc, il nc peut érre que le poine de ren=
contre D , foit autre que le point de rencoutre ¢.

Car fi faire fepeut, que le point de rencontre D, tombe ail-
leurs qu awpoint C : o1 iceluy point D tombera fur 'une oy
l'autre des lignes AC, BC 5 ou dans le tiiangle ACB; ou hors
iceluy.

Premierement, iceluy point de rencontre D, ne peut écre {ur
la ligne AC, comme cn la premiere figure : car il faudroit que
les deux lignes AD, & AC fuffent égales entr’elles, {cavoir eft
la paitie au tout ; ce qui eft abfutde : partant la rencontie Dyne
{ e f;:r::? point fur AC, ny auffi fur B C, & caule d¢ la méme ab=

urditd.

Plate I. A page from Henrion’s Euclid of (1677) showing three different cases of the proof
of (1.7).
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1.7

1.8

1.9

1.10

1. Euclid’s Geometry

A rhombus is a figure with four equal
sides. Show that the diagonals of a
rhombus meet at right angles, and that
the four small triangles thus formed are
congruent to each other.

A rectangle is a four-sided figure with
four right angles. Show that the two
diagonals of a rectangle are congruent
and bisect each other.

The exterior angles of a pentagon, with
sides extended, add up to four right
angles.

If two right triangles have one side and
the hypotenuse respectively congruent,
then the triangles are congruent. (We
call this the right-angle-side-side theo-
rem (RASS). Note in general that “ASS"
is false: If two triangles have an angle
and two sides equal, they need not be
congruent.)

Show that the three angle bisectors of
a triangle meet in a point. Be careful
how you make your construction, and
in what order you do the steps of
your proof. (If you need a hint, look at
(1v.4).)

The three perpendicular bisectors of
the sides of a triangle meet in a single
point. Be sure to give a reason why
they should meet at all. For a hint, look
at (IV.5).

Still using only results from Book I,
show that if AB is the diameter of a
circle, and C lies on the circle, then the
angle / ACB is a right angle.
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1.11 Read the Elements, Book III, Propositions 1-34. Be prepared to present statements
and proofs of (111.16), (I111.18), (111.20), (111.21), (111.22), (111.31), and (I11.32).

For the following exercises, present proofs in the style of Euclid, using any results
you like from (1.1)-(1.34) and (II1.1)-(111.34) (still excluding the theory of area).

1.12 Let AB and AC be two tangent lines
from a point A outside a given circle.
Show that AB = AC.

1.13 Let two circles be tangent at a point A.
Draw two lines through A meeting the
circles at further points B, C, D, E. Show

that BC is parallel to DE.

1.14 Given a pentagon ABCDE. Assume that
all five sides are equal, and that the
angles at A, B, C are equal. Prove that
in fact all five angles are equal (so it is
a regular pentagon).

1.15 Let two circles y and d meet at a point P. Let the tangent to y at P meet d again at B,
and let the tangent to d at P meet y again at A. Let 0 be the circle through A, B, P. Let
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the tangent to ¢ at P meet y and J at C, D. Prove that PC = PD. Hint: Draw lines
joining P and the centers of the three circles, and look for a parallelogram.

A

2 Ruler and Compass Constructions

One of the notable features of Euclid’'s Elements is his constructive approach to
geometry. Many of his propositions are not theorems in the usual sense, that
under certain hypotheses a certain result is true. Rather they are construction
problems: given certain data, to construct a certain figure. For example, the first
proposition of Book I is to construct an equilateral triangle. We could regard
these constructions as existence proofs. But they are existence proofs of a very
special kind: They are constructive, and the constructions are carried out with
specified tools, the ruler (or straightedge) and compass. Almost one-third of
the propositions in Book I, and all of the propositions in Book IV, are construc-
tions. The constructive approach is even embedded in the initial assumptions of
Euclid’'s geometry, because Postulate 1 says “to draw a straight line from any
point to any point,” and Postulate 3 says “to describe a circle with any center
and distance.” A modern mathematician would be more likely to say that there
exists a line through any two points, and replace Postulate 3 by a definition of a
circle as the set of points equidistant from a given point.

This constructive approach pervades Euclid's Elements. There is no figure in
the entire work that cannot be constructed with ruler and compass,! and this

! For the three-dimensional figures of Books XI-XIII we must allow also theoretical tools that can
draw a plane through three given points and that can rotate a semicircle about its diameter as axis to
construct a sphere.
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limits the world of subjects to be discussed to those that are constructible. So for
example, in Book IV, where Euclid discusses regular polygons inscribed in a
circle, we find the triangle, the square, the pentagon, the hexagon, and the reg-
ular 15-sided polygon, all of which can be constructed. But there is no mention
of a regular 7-sided polygon, for example, and there are no theorems about reg-
ular n-gons such as one might find in a modern text. A modern mathematician
would never doubt the existence of a regular 7-gon: Just take angles of 2r/7 at
the center of the circle, and join corresponding points on the circumference.
The question would be rather, is it possible to construct the regular 7-gon with
ruler and compass? But for Euclid, it seems that he cannot discuss a figure until
he has shown how to construct it. Look, for example, at (1.46), to construct a
square on a given line segment. In terms of what is needed for the proof, this
result could have been placed immediately after (1.34). Why is it here? Presum-
ably, because in the next proposition, the famous Pythagorean theorem (1.47),
he needs to talk about the squares on the three sides of the right triangle, and he
does not want to do this until he has shown that a square can be constructed on
any given line-segment.

This brings us to the thorny question of what exactly it means to say that a
certain mathematical object exists. For some of the structures considered by
modern-day mathematicians, this is indeed a difficult question. But for Euclid
there was no doubt. I believe we will not be far from the truth if we say simply
that in Euclid's geometry only those geometrical figures exist that can be con-
structed with ruler and compass.

So now let us examine more closely ¢
how these ruler and compass construc-
tions work. Look at (I.1), for example:
to construct an equilateral triangle on a
given line segment. We are given a line
segment AB. We draw a circle with cen-
ter A and radius AB, and another circle A B
with center B and radius BA. These two
circles meet at a point C (and also at
another point D, which we do not need).

With the ruler we draw the lines AC and
BC. Then ABC is the required equilat- P
eral triangle.

Thus the construction consists of a finite number of lines and circles drawn
with the ruler and compass, starting from the initial data, obtaining new points
as intersections along the way, and ending with the desired figure.

We will distinguish the construction, which is a series of applications of the
ruler and compass to create a certain figure, from the proof that the figure con-
structed has the desired properties. The construction can be described, and
makes sense, independently of any other constructions or proofs we may have
made previously. But the proof that a certain construction gives the desired




result depends on its position in the logical sequence of propositions. In the case
of (1.1), there are no previous propositions, so Euclid’s proof depends only on
the definitions, postulates, and common notions set out at the beginning of Book
I. His proof says, in substance, that AC = AB because they are both radii of the
first circle, and BA = BC because they are radii of the second circle, so AB =
AC = BC and hence the triangle is equilateral.

Next, let us look at (I1.2). Given a
point A and a line segment BC, we must
construct a line segment AF originating
at A, equal to BC. Euclid’s method is as
follows: Draw AB. Construct the equilat-
eral triangle ABD using the construction
of (I.1). Then with center B and radius
BC draw a circle to meet DB extended at
E. With center D and radius DE draw a
circle to meet DA extended at F. Then
AF is the required line segment.

The proof is natural enough: BC =
BE by construction; DE = DF by con-
struction; DB = DA by construction, so
by subtraction AF = BE = BC as required.

But the question that immediately arises is, why did Euclid go to all this
trouble when he could have made a much simpler construction: Set the compass
points to the distance BC, then draw a circle with center A and radius BC,
choose F any point on that circle, and join A to F'? We must infer from the pres-
ence of this construction that Euclid allowed himself to use the compass only in
its narrow sense to draw a circle with a given center and passing through a
given point. It could not be lifted off the paper and used to transport a given
distance to another location. So some people call Euclid's compass a collapsible
compass: when you lift it off the paper the points fall together and do not pre-
serve the radius they were set at. However, the function of this construction
(1.2) is to show that with the collapsible compass one can still accomplish the
same result, as if the compass had not been collapsible, namely, to transport a dis-
tance to another point in the plane. So from now on, we will allow ourselves to
use the compass in this stronger sense, to draw a circle with given center and
radius equal to any given line segment.

Counting Steps

To increase our awareness of the process of ruler and compass constructions, let
us make precise exactly how the tools can be used, and let us set up a way of
counting our steps as a measure of the complexity of the construction. The
number of steps needed for a construction is not really important of itself, but
by counting our steps we become more conscious of the process. This is one of
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the practical aspects of this course, to have some fun while we are pondering the
deeper theoretical questions.

In any construction problem there are usually some points, lines, or circles
given at the outset. The ruler may be used to extend a given or previously con-
structed line in either direction. The ruler may be used to draw a new line
through two distinct points either given or constructed earlier. The ruler may
not be used to measure distances, and it may not have any markings on it
(hence the frequently used term straightedge to emphasize that it may be used
only to draw straight lines).

The compass may be used to draw a circle with center a given or previously
constructed point, and with radius equal to the distance between any two given
or previously constructed points.

In addition, at any time one may choose a point at random, or subject to
conditions such as that it should lie on a given line or circle, or be on the other
side of a line from a given point, etc.

Each time a new line or circle is drawn, those points in which it intersects
previously given or constructed lines and circles will be considered to be con-
structed also.

For counting, we consider each use of the ruler to construct a new line as
one step, and each use of the compass to construct a new circle as one step.
Extending lines previously given or constructed, choosing points at random, and
obtaining new points as intersections do not count as separate steps.

Thus for example, the construction of the equilateral triangle (1.1) above
takes four steps:

The line segment AB is given

1. Draw circle with center A and radius AB.

2. Draw circle with center B and radius BA. Get C.
3. Draw AC.

4. Draw BC.

Then ABC is the required triangle.

When performing more complicated constructions, we will count all of the
steps required to perform the entire construction, so that each construction is
self-contained and independent of other constructions (though inevitably each
construction will contain elements of other constructions). This imposes a dif-
ferent notion of economy of construction from Euclid's. For while Euclid in his
sequential development of the propositions finds it most economical to utilize
previous constructions, we will find that minimizing the total number of steps
will often lead us to different constructions.

Look at (1.9), for example, to bisect a given angle. The angle is given by a
point A and two rays [, m emanating from A. Euclid’'s method is this: Choose B
on [ at random. Find C on m such that AB = AC (1.3). Draw BC. Construct the
equilateral triangle BCD (1.1). Join AD. Then AD is the angle bisector.
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Euclid’s method is economical for A
him because it makes use of previously
described constructions (1.3) and (I.1). If
we count the number of steps to carry
out this construction, we find seven:

Choose B at random on [ (no step)
Circle center A radius AB, get C.
Draw BC. B c
Circle center B radius BC.

Circle center C radius CB, get D.
Draw BD. Q2 "
Draw CD. b

Draw AD, which is the angle bisector.

No e W=

If we are concerned only with making an independent construction for the
angle bisector, there is no need to draw the lines BC, BD, CD. Thus the con-
struction reduces to four steps. In order to prove that this construction works,
we might want to draw the lines BC, BD, CD and argue as Euclid did. The lines
then become part of the proof. But they are not part of the construction, so the
construction still requires only four steps.

For another example, look at Euclid’s construction (1.10) to bisect a given
line segment. He first appeals to (I1.1) to construct an equilateral triangle, and
then to (1.9) to bisect the angle at its vertex. This is an elegant method, making
use of what he has done before. But in terms of numbers of steps, it is not effi-
cient. If we add the numbers of steps used in the two previous results, we get 11
steps. If we make use of points already constructed in (I.1) when we do the
construction of (1.9), this reduces to 9. But it is possible to give a direct con-
struction of the midpoint of a segment in only three steps (see Exercise 2.2).

A Note About Accuracy and Exactness of Constructions

When carrying out ruler and compass constructions, we attempt to make our
drawings as accurate as possible. Using a sharp pencil we draw fine lines and
make them pass through given points as closely as possible. Nevertheless, there
is always a small error in each step, and those errors will compound throughout a
long construction, so that the final figure does not always do just what you want.
For example, in constructing the circle circumscribed about a given triangle
(Exercise 2.10), you may find that your circle passes nicely through two of the
points but misses the third one slightly. This error is inevitable in any drawings
we make.

But, to paraphrase the quotation from Plato in Section 1, it is not the line and
the circle drawn on the paper that we are thinking of, it is the absolute line and
the absolute circle. And in this sense, our construction must be mathematically
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exact. In other words, it must be possible to prove using the reasoning of abstract
geometry that this construction in its ideal form gives the exact result we are
seeking.

This distinction has caused considerable confusion among amateur mathe-
maticians through the ages, who were trying to make constructions, now known
to be impossible, of trisecting the angle or squaring the circle. For many of their
constructions are remarkably accurate, while failing to be mathematically exact.
(See the interesting book of Dudley (1987), as well as Sections 25, 28 below.)

Exercises

For each of the following problems, carry out a ruler and compass construction as accu-
rately as you can. Number and label each of your steps as in the text. Feel free to use
abbreviations such as “AB" for “draw a line AB"; “"OAB" to draw a circle with center A
and radius AB; or “OcArBC” to draw a circle with center A and radius BC. Label each new
point as it is constructed and mention it (e.g., “get F”) in the appropriate step. For the
time being, we are not concerned with the proofs. Just do the construction. You should,
however, be able to give an informal proof (convincing argument) of why it works, if
asked.

After you make your construction, locate the corresponding proposition in Euclid
(Book I, III, or IV) and compare. How many steps does his method require? What do you
think is the least number of steps possible? I will sometimes give a par value for a con-
struction, which is the typical number of steps an experienced constructor would need.
By trying harder, you can sometimes succeed with fewer steps.

2.1 Given an angle, construct the angle
bisector (par = 4).

2.2 Given a line segment, find the mid-
point of that segment (par = 3).

2.3 Given a line I and a point A on I, con-
struct a line perpendicular to [ through
A (par = 4, possible in 3).

>
——— e -
o
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2.4

2.5

2.6

2.7

2.8

2.9
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Given a line | and a point A not on I,
construct a line perpendicular to I pass-
ing through A (par = 4, possible in 3).

Given an angle at a point A, and given
a ray emanating from a point B, con-
struct an angle at B equal to the angle
at A (par = 4).

Given a line | and a point A not on [,
construct a line parallel to I, passing
through A (par = 3).

Given a circumference of a circle, find
the center of the circle (par = 5).

Given a circle with its center O, and
given a point A outside the circle, con-
struct a line through A tangent to the
circle. (Warning: You may not slide the
ruler until it seems to be tangent to
the circle. You must construct another
point on the desired tangent line before
drawing the tangent.) (Par = 6.)

Construct a circle inscribed in a given
triangle ABC (par = 13).

-y ——
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~
R
B
A
A
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2.10

212

2.13

2.14

2.15

2.16

2.17

2.18

Construct a circle circumscribed about
a given triangle ABC (par = 7).

a
Given a line [, a line segment d, and a / P

point O, construct a circle with center , - N L
O that cuts off a segment congruent to d T
on the line I (par = 9). / 0 '
P
. . . . ’ ~
Given a point A, a line [, and a point / \

B on I, construct a circle that passes I \
through A and is tangent to the line [ )
at B (par = 8). A "\ /

Construct three circles, each one meeting the other two at right angles. (We say that
two circles meet at right angles if the radii of the two circles to a point of inter-
section make right angles.) (Par = 10.)

Given a line segment AB, divide it into o &) .
three equal pieces (par = 6). A B
(The one-inch ruler.) Suzie's ruler broke into little pieces, so she can only draw lines

one inch long. Fortunately, her compass is still working. She has two points on her
paper approximately 3 inches apart. Help her construct the straight line joining
those two points.

(The rusty compass.) Joe's compass has rusted into a fixed position, so it can only
draw circles whose radius is one inch. Fortunately, his ruler is still working. Help
him construct an equilateral triangle on a segment AB that is approximately 2%
inches long (par = 6).

Using a ruler and rusty compass (cf. Exercise 2.16), construct the perpendicular to
a line I at a point A on I (par = 6).

Using a ruler and rusty compass, given a line [ and a point A more than 2 inches
away from [, construct the line through A and perpendicular to I (par = 12).
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2.19

2.20

2.21

2.22

2.23

2.24

1. Euclid’s Geometry

Using a ruler and rusty compass, given 2]
a segment AB and given a ray AC, con-
struct a point D on the ray AC such

that AB = AD.
C
A 0
vy
B

Using a ruler and rusty compass, given
a line I and given a segment AB more \
than one inch long, construct one of the A
points C in which the circle of center A |
and radius AB meets L. n[ ya

Discussion question: Is it possible with ruler and rusty compass to construct any
figure that can be constructed with ruler and regular compass? What would you
need to know in order to prove that this is possible? For starters, can you carry out
all the constructions of Euclid, Book I, with ruler and rusty compass?

A
(Back to regular ruler and compass con-
struction.) Given a segment AB, given a
circle with center O, and given a point
P inside O, construct (if possible) a line
through P on which the circle cuts off a
segment congruent to AB (par = 5). B

Given a segment AB, given an angle o, \ ~
and given another segment d, construct \ =~
a triangle ABC with base equal to AB, \ ~
angle z at C, and such that AC + BC = d. ~

Given two circles I', I, with centers
O, O', construct a line tangent to both __
circles. /
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3 Euclid’s Axiomatic Method

One of the remarkable features of Euclid's Elements is its orderly logical struc-
ture. Euclid took the great mass of geometrical material that had grown in the
previous two or three centuries, and organized it into one coherent logical
sequence. This is what we now call the axiomatic method: Starting from a small
number of definitions and assumptions at the beginning, all the succeeding
results are proved by logical deduction from what has gone before. Euclid’s text
has been a model of mathematical exposition, unchallenged for two thousand
years, and only recently (in the last hundred years or so) replaced by newer
mathematical systems that we consider more rigorous. As we read Euclid, let us
observe how he organizes his material, let us be curious about why he does
things the way he does, and let us explore the questions that come to mind
when we as modern mathematicians read this ancient text.

Definitions

Euclid begins with definitions. Some of these definitions are akin to the modern
notion of definition in mathematics, in that they give a precise meaning to the
term being defined. For example, the tenth definition tells us that if a line seg-
ment meets a line so that the angles on either side are equal, then these are
called right angles. This tells us the meaning of the term right angle, assuming
that we already know what is meant by a line, a line segment, an angle, and
equality of angles. Similarly, the fifteenth definition, rephrased, defines a circle
to be a set of points C, such that the line segments OA from a fixed point O to
any point A of the circle C, are all equal to each other, and the point O is called
the center of the circle. This tells us what a circle is, assuming that we already
know what a line segment is, and what is meant by equality of line segments.
On the other hand, some of Euclid's other definitions, such as the first, “a
point is that which has no part,” or the second, “a line is breadthless length,” or
the third, “a straight line is a line which lies evenly with the points on itself,”
give us no better understanding of these notions than we had before. It seems
that Euclid, instead of giving a precise meaning to these terms, is appealing to
our intuition, and alluding to some concept we may already have in our own
minds of what a point or a line is. Rather than defining the term, he is appealing
to our common understanding of the concept, without saying what that is. This
may have been very well in a society where there was just one truth and one
geometry and everyone agreed on that. But the modern consciousness sees this
as a rather uncertain way to set up the foundations of a rigorous discipline. What
if we say now, oh yes, we agree on what points and lines are, and then later it
turns out we had something quite different in mind? So the modern approach is
to say these notions are undefined, that is, they can be anything at all, provided
that they satisfy whatever postulates or axioms may be imposed on them later.
In the algebraic definition of an abstract group, for example, you never say what
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the elements of the group are, nor what the group operation is. Those are un-
defined. However, they must satisfy the group axioms that the operation is as-
sociative, there exists an identity, and that there exist inverses. The elements of
the group can then be anything as long as they satisfy these axioms. They could
be integers, or they could be cosets of a subgroup of the integers, or they could be
rotations of a geometrical object such as a cube, or anything else. So in our read-
ing of Euclid, perhaps we should regard “point” and “line” as undefined terms.

It may be worth noting some differences of language between Euclid's text
and modern usage. By a line he means something that may be curved, which we
would call a curve. He says straight line for what we call line. And then he says a
finite straight line (as in the statement of (1.1)) for what we would call a line seg-
ment. For Euclid, a plane angle results where two curves meet, and a rectilineal
plane angle is formed when two line segments meet. Note that Euclid requires
the two sides of an angle not to lie in a straight line. So for Euclid there is no
zero angle, and there is no straight angle (180°). So we should think of Euclid’s
concept of angle as meaning an angle of « degrees, with 0 < « < 180° (though
Euclid makes no mention of the degree measure of an angle).

Euclid’s notion of equality requires special attention. He never defines
equality, so we must read between the lines to see what he means. In Euclid’s
geometry there are various different kinds of magnitudes, such as line segments,
angles, and later areas. Magnitudes of the same kind can be compared: They can
be equal, or they can be greater or lesser than one another. Also, they can be
added and subtracted (provided that one is greater than the other) as is sug-
gested by the common notions.

Euclid’s notion of equality corresponds to what we commonly call congruence
of geometrical figures. In high-school geometry one has the length of a line seg-
ment, as a real number, so one can say that two segments are congruent if they
have the same length. However, there are no lengths in Euclid's geometry, so we
must regard his equality as an undefined notion. Because of the first common
notion, “things which are equal to the same thing are also equal to one another,”
we may regard equality (which we will call congruence to avoid overuse of the
word equal) to be an equivalence relation on line segments. Similarly, we will
regard congruence of angles as an equivalence relation on angles.

Postulates and Common Notions

The postulates and common notions are those facts that will be taken for granted
and used as the starting point for the logical deduction of theorems. If you think
of Euclid’s geometry in the classical way as being the one true geometry that
describes the real world in its ideal form, then you may regard the postulates
and common notions as being self-evident truths for which no proof is required.
If you think of Euclid’s geometry in the modern way as an abstract mathematical
theory, then the postulates and common notions are merely those statements
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that are arbitrarily selected as the starting point of the theory, and from which
other results will be deduced. There is no question of their “truth,” because one
can begin a mathematical theory from any hypotheses one likes. Later on, how-
ever, there may arise a question of relevance, or importance of the mathemati-
cal theory constructed. The importance of a mathematical theory is judged by
its usefulness in proving theorems that relate to other branches of mathematics
or to applications. If you begin a mathematical theory with weird hypotheses as
your starting point, you may get a valid logical structure that is of no use. From
that point of view the choice of postulates is not so arbitrary. In any case, we can
regard Euclid's postulates and common notions collectively as the set of axioms
on which his geometry is based.

Some commentators say that the postulates (as in Heath’s edition) are those
statements that have a geometrical content, while the common notions are
those statements of a more universal nature, which apply to all the sciences.
Other commentators divide them differently, calling “postulates” those state-
ments that allow you to construct something, and calling “axioms” those state-
ments that assert that something is always true. One should also note that some
editors give extra axioms not listed in Heath's edition, such as “halves of equals
are equal,” which is used by Euclid in the proof of (I1.37), or “two straight lines
cannot contain a space.”

We have already noted the constructive nature of Euclid's approach to
geometry as expressed in Postulates 1-3. By the way, Euclid makes no explicit
statement about the uniqueness of the line mentioned in Postulate 1, though he
apparently meant it to be unique, because in the proof of (1.4) he says “other-
wise two straight lines will enclose a space: which is impossible.”

In the list of Postulates and Common Notions, Postulate 5 stands out as being
much more sophisticated than the others. It sounds more like a theorem than an
axiom. We will have more to say about this later. For the moment let us just
observe that two thousand years of unsuccessful efforts to prove this statement
as a consequence of the other axioms have vindicated Euclid’s genius in realiz-
ing that it was necessary to include Postulate 5 as an axiom.

Intersections of Circles and Lines

As we read Euclid's Elements let us C
note how well he succeeds in his goal
of proving all his propositions by pure
logical reasoning from first principles.
We will find at times that he relies on
“intuition,” or something that is obvious A \ B

from looking at a diagram, but which is
not explicitly stated in the axioms. For
example, in the construction of the equi-
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lateral triangle on a given line segment AB (1.1) how does he know that the two
circles actually meet at some point C? While the fifth Postulate guarantees that
two lines will meet under certain conditions, there is nothing in the definitions,
postulates, or common notions that says that two circles will meet. Nor does
Euclid offer any reason in his proof that the two circles will meet.

If you carry out the construction with ruler and compass on a piece of paper,
you will find that they do meet. Or if you look at the diagram, it seems obvious
that they will meet. However, that is not a proof, and we must acknowledge that
Euclid is using something that is not explicitly guaranteed by his axioms and yet
is essential to the success of his construction.

There are two separate issues here. One is the relative position of the two
circles. Two circles need not always meet. If they are far apart from each other,
or if one is entirely contained in the other, they will not meet. In the present
case, part of one circle is inside the other circle, and part outside, so it appears
from the diagram that they must cross each other.

The second issue is, assuming that
they are in a position so that they ap-
pear to meet, does the intersection '9
point actually exist? Today we will im-
mediately think of continuity and the
intermediate value theorem: If y = f(x) =[x
is a real-valued continuous function 3
defined on the unit interval [0,1] of _
the real numbers, and if f(0) < 0 and 0 / 1 x
f(1) > 0, then there is some point a e
[0,1] with f(a) = 0. In other words, the
graph of the function must intersect the
x-axis at some point in the interval.

However, we must bear in mind that the concepts of real numbers and con-
tinuous functions were not made rigorous until the late nineteenth century, and
that this kind of mathematical thinking is foreign to the spirit of Euclid's Ele-
ments.

To make the same point in a differ- J
ent way, suppose we consider the Car- _—
tesian plane over the field of rational (
numbers @, where points are ordered
pairs of rational numbers, and let AB
be the unit interval on the x-axis. Then
the vertex C of the equilateral triangle, x
which would have to be the point o lq
(1,4V/3), actually does not exist in this
geometry.

So later on, when we set up a new system of axioms for Euclidean geometry,
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we will have to include some axiom that guarantees the existence of the inter-
section points of circles with other circles, or with lines, at least those that arise
in the ruler and compass constructions of Euclid's Elements. Some modern
axiom systems (such as Birkhoff (1932) or the School Mathematics Study Group
geometry) build the real numbers into the axioms with a postulate of line mea-
sure, or include Dedekind’s axiom that essentially guarantees that we are work-
ing over the real numbers. In this book, however, we will reject such axioms as
not being in the spirit of classical geometry, and we will introduce only those
purely geometric axioms that are needed to lay a rigorous foundation for
Euclid’s Elements.

The issue of intersecting circles arises again in (1.22), where Euclid wishes to
construct a triangle whose sides should be equal to three given line segments
a, b, c. This requires that a circle with radius a at one endpoint of the segment b
should meet a circle of radius ¢ at the other end of the segment b. Euclid correctly
puts the necessary and sufficient condition that this intersection should exist in
the statement of the proposition, namely that any two of the line segments
should be greater than the third. However, he never alludes to this hypothesis
in his proof, so that we do not see in what way this hypothesis implies the exis-
tence of the intersection point. While some commentators have criticized Euclid
for this, Simson ridicules them, saying “For who is so dull, though only begin-
ning to learn the Elements, as not to perceive ... that these circles must meet
one another because FD and GH are together greater than FG.” Still, Simson has
only discussed the position of the circles and has not addressed the second issue
of why the intersection point exists. (See Plate V, p. 109)

The Method of Superposition

Let us look at the proof of (1.4), the A

side-angle-side criterion for congru-

ence of two triangles (SAS for short).

Suppose that AB = DE, and AC = DF, -

and the included angle / BAC equals B <

/. EDF. We wish to conclude that the tri- D

angles are congruent, that is to say, the

remaining sides and pairs of angles are

congruent to each other, respectively.

Euclid's method is to “apply the tri- g
angle” ABC to the triangle DEF. That €

is, he imagines moving the triangle ABC onto the triangle DEF, so that the point
A lands on the point D, and the side AB lands on the side DE. Then he goes on
to argue that the ray AC must land on the ray DF, because the angles are
equal, and hence C must land on F because the sides are equal. From here he
concludes that the triangles coincide entirely, hence are congruent.
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effe. Nam quum de realiqua fermonem inftituimus : ca nobis tacité per definitio-
nem fubitin animum : Non enim duos angulos zquales efle cogitabo , nifi quid fic
aquales eflc angulos concipiam. Quod refpiciens Euclides;angulorum zqualitatem
proponere , atque cadem opera definire voluit : ve hoc Theorema pro [efinitione
haberemus. Nemo enim fignificantius explicabit angulorum zqualitatem, quim fi
dixerit duos angulos zquales fieri, quum duo latera vnum angulum continentia,
duobus alterum angulum continentibus fiunt @qualia , & bafes que latera conne-
¢tunt, xquales. Conftatenim angulum tantum efle , quanta cft duarum linearum
ipfum continentium apertio, feu didu&io , hanc veré rantam efle , quanta cft bafis,
hoceft, linea ipfas conneétens: Atque vt claré dicam , tantuscftan gulus BA C,
quanta eft remotio linex A ¢ abipfa A 5 :tanta verd efficitur remotio, quantam
exhibetlinea B c¢. Hocautem in Hofcelibus eft evidentius. Sint enim duo Ifofcelia
ABc & D E F:quorum vniusduolatera A 3 & A ¢ duobus p E & b F alte-
rius fint gqualia:angulusg; A angulo p.Acpo-
fitis centris in A & p punéis, ducantur j'uo
Circuli:prior fecundum A B, alter fecundum
p £ {patium.Horum priormanifeftd tranfibic
per B & c:alter verd per £ & Fpunéta:quum
AB &Ac,itemd p E & E F fintzqualia,
& a centro vtring; exeuntia. Atque, ex defini-
tione &qualium angulorum, eruntarcus s ¢ & ¢ zquales. Angulorum enint
magnitudo defignatur ex arcubus Circulorum qui per extremas lineas qua angulos
continén,tranfeunt. Ac conuerfo modo,zquales anguli atque qualibus lineis com-
prehenfi, 2quales fubtendunt peripherias. Q uum enim @qualia fint fpatia B ¢ &
E ¥, cazqualibusredis lineis claudi oportet : propterca quod re@a linga,cft 3 pun-
&o ad punétum via breuiflima. Atque haud diffimili iudicio , ex lateruth ratione 8
bafium , quanta fit angulorum magnitudo ftimabimus. Quur ergo Euclides hoc
inter Theoremata repofuit,non inter Principia premifit? Nimirim,quum {peciem
quodammodo mixtam Principij & Theorematis prefe ﬁgrrct:P}ihciPij ; quod in
communi animi iudicio conﬁﬂcret:Thcorcmathquéd {peciatim Tna&t‘)gﬁz Trian-
gulis comparanda proponetet : maluit Euclides inteéficapernata refiffe : prafer-
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cis enim Principijs Geometriam contentam effe oportebat : immo mulea Princi pia
confultd fupprimuntur,ne fit onerofa multitudo:ve etiam qus exprimunrur,tantum
ad exemplum exprimi videantur. Hiic accedit,quod primum Theorema facile,per-
{picuum, ac fenfui obuium effe debebar, pro Geometriz lege, qua ex paruis humi-
libusg; initijs, in progreflus mirabiles (efc extollit.

Huius itaque Propofitionis veritatem non aliunde quim 3 communi iudicio pe-
temus:: cogitabimusq; Figuras Figuris fuperponere , Mechanicum quippiam effe:
intelligere vero , id demim effe Mathematicum. Jam verd quum fuerit confeflam
duo Triangula invicem efle zquilatera, ipfa quoque inter ¢ 2qualia fateri erit ne-
ceffarium. Etenim nulla euidentiori fpecic xqualitas Figurarum dignofcicur , quim
ex laterum zqualitate : quanquam Circulorum equalitas ex diametris definitur:
fed non aliam ob caufam,quim quod linea obliqua fui copiam aded aperté non fa-
cit vt reéta : Cuius menfuram facile capimus, ac per cam, obliquarum inter (& com-
parationem facimus.

At fi hzc fuperpofitio aliqua ratione admittenda fic : tolerabilior Iane frerithoc
qui fequitur modo.

Manente duorum Triangulorum 4 5 ¢ & b E ¥ conditione,continuabo £ b

Plate II. The commentary on (1.4) from Peletier's Euclid of (1557). He says the truth of
this proposition belongs among the common notions, because to superimpose one figure
on another is mechanics, not mathematics.

32
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This is another situation where Euclid is using a method that is not explicitly
allowed by his axioms. Nothing in the Postulates or Common Notions says that
we may pick up a figure and move it to another position. We call this the method
of superposition.

Euclid uses this method again in the proof of (1.8), but it appears that he was
reluctant to use it more widely, because it does not appear elsewhere. If it were
a generally accepted method, for example, then Postulate 4, that all right angles
are equal to each other, would be unnecessary, because that would follow easily
from superposition.

If we think about the implications of this method, it has far-reaching con-
sequences. It implies that one can move figures from one part of the plane to
another without changing their sides or angles. Thus it implies a certain homo-
geneity of the geometry: The local behavior of figures in one part of the plane
is the same as in another part of the plane. If you think of modern theories of
cosmology, where the curvature of space changes depending on the presence of
large gravitational masses, this is a nontrivial assumption about our geometry.

To state more precisely what assumptions the method of superposition is
based on, let us define a rigid motion of the plane to be a one-to-one transforma-
tion of the points of the plane to itself that preserves straight lines and such that
segments and angles are carried into congruent segments and angles. To carry
out the method of superposition, we need to assume that there exist sufficiently
many rigid motions of our plane that

(a) we can take any point to any other point,

(b) we can rotate around any given point, so that one ray at that point is taken
to any other ray at that point, and

(c) we can reflect in any line so as to interchange points on opposite sides of the
line.

If we were working in the real Cartesian plane R* with coordinates x, y, we
could easily show the existence of sufficient rigid motions by using translations,
rotations, and reflections defined by suitable formulas in the coordinates.

For example, a translation taking the
point (0, 0) to (a, b) is given by

7
x =x+a,
Yy =y+bh,
and a rotation of angle « around the ’ (qu)

origin is given by

x'=xcosa — ysina,
Yy =xsino+ ycosa.
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Thus we can easily justify the use of the method of superposition in the real
Cartesian plane. However, since there are no coordinates and no real numbers
in Euclid's geometry, we must regard his use of the method of superposition as
an additional unstated postulate or axiom.

To formalize this, we could postulate the existence of a group of rigid motions
acting on the plane and satisfying the conditions (a), (b), (c) mentioned above.
Indeed, there is an extensive modern school of thought, exemplified by Felix
Klein's Erlanger Programm in the late nineteenth century, which bases the study
of geometry on the groups of transformations that are allowed to act on the
geometry. This point of view has had wide-ranging applications in differential
geometry and in the theory of relativity, for example.

We will discuss the rigid motions in Euclidean geometry in greater detail
later (Section 17). For the moment let us just note that the proof of the (SAS)
criterion for congruence in (1.4) requires something more than what is in Euclid’s
axiom system. Hilbert's axioms for geometry actually take (SAS) as an axiom in
itself. This seems more in keeping with the elementary nature of Euclid’s geome-
try than postulating the existence of a large group of rigid motions.

Finally let us note that Euclid’s use of the method of superposition in the
proof of (1.4) gives us some more insight into his concepts of “equality” for line
segments and angles. In Common Notion 4 he says that things that coincide
with one another are equal (congruent) to one another. In the proof of (I1.4) he
also uses the converse, namely, if things (line segments or angles) are equal to
one another (congruent), then they will coincide when one is moved so as to be
superimposed on the other. So it appears that Euclid thought of line segments or
angles being congruent if and only if they could be moved in position so as to
coincide with each other.

Betweenness

Questions of betweenness, when one point is between two others on a line, or
when a line through a point lies inside an angle at that point, play an important,
if unarticulated, role in Euclid's Elements. To explain the notion of points on a
line lying between each other, one could simply postulate the existence of a
linear ordering of the points. Similarly, for angles at a point one could talk of
a circular ordering.

But when a hypothesis of relative position of points and lines in one part of a
diagram implies a relationship for other parts of the figure far away, it seems
clear that something important is happening, and it may be dangerous to rely on
intuition.

For example, how do you know that the angle bisector at a vertex A of a tri-
angle ABC meets the opposite side BC between the points BC and not outside?
Of course, it is obvious from the picture, but what if you had to explain why
without drawing a picture?
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We have already seen that the relative position of two circles may affect
whether they meet or not. Let us look at some other instances where between-
ness plays an important role in a proof.

Consider (1.7), which is used in the
proof of the side-side-side (SSS) crite-
rion for congruence of triangles (1.8). In
(1.7) Euclid shows that it is not possible
to have two distinct triangles ABC and
ABD on the same side of a segment AB
and having equal sides AC = AD and
BC = BD.

The proof goes like this. Since AC =
AD, the triangle ACD is isosceles, and
so the base angles are equal (1.5). In the
diagram /1 = /4. On the other hand,
since BC = BD, the triangle BCD is isos-
celes, so its base angles are equal (1.5)—
in our diagram £ 2 = £ 3. But now L2 is
less than /1, which is equal to /4,
which is less than /3. So /2 is much
less than /3. But they are also equal,
and this is impossible.

Note that this proof depends in an essential way on the relative position of
the lines meeting at C and D, which determines the inequalities between the
angles. If the line AD should reach the point D outside of the triangle BCD, as in
our second (impossible) picture, then £2 < £1 and /3 < /4, and there is no
contradiction. Thus the original proof depends on a certain configuration of
lines being inside certain angles, which in turn depends on some global proper-
ties of the entire two-dimensional figure, and these relationships would be hard
to explain convincingly without using a diagram. So as soon as we realize that
we are depending on a diagram for part of our proof, a mental red flag should
pop up to alert us to the question, What exactly is going on here, and what
unstated assumptions are we using?
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For another example where similar
questions arise, look at the proof of
(1.16) to show that an exterior angle of A
a triangle is greater than the opposite F
interior angle.

Let ABC be the given triangle. Bisect
AC at E, draw BE, and extend that line
to F so that BE = EF. Draw CF. Then
by SAS (1.4), Euclid shows that the tri-
angle BEA is congruent to the triangle
FEC, and so the angle at A is equal to
the angle /. ACF. He then says that the b c D
angle / ACF is less than the exterior
angle /. ACD, which proves the result.

How do we know this relation among the angles? Because the line CF lies
inside the angle ACD. But why is it inside? Since the line CF was constructed
using the point F, which in turn was constructed using the point E, this is a
global property of the whole figure, which is clear from the diagram, but would
be hard to explain without a diagram.

To illustrate the danger of relying on diagrams in geometrical proofs, we will
present a well-known fallacy due to W.W. Rouse Ball (1940). The following pur-
ports to be a proof that every triangle is isosceles. See if you can find the flaw in
the argument.

Example 3.1

Let ABC be any triangle. Let D be the
midpoint of BC. Let the perpendicular
to BC at D meet the angle bisector at A
at the point E. Drop perpendiculars EF
and EG to the sides of the triangle, and
draw BE, CE. The triangles AEF and
AEG have the side common and two
angles equal, so they are congruent by
AAS (1.26). Hence AF = AG and EF =
EG. The triangles BDE and CDE have
DE common, two other sides equal, and
the included right angles equal. Hence
they are congruent by SAS (1.4). In par-
ticular BE = CE.

Now, the triangles BEF and CEG are right triangles with two sides equal, so
they are congruent (see lemma below), and hence BF = CG. Adding equals to
equals, we find AB = AF+ FB is equal to AC = AG + GC. So the triangle ABC is
isosceles.

B ' D



There are several other cases to
consider. If the point E lies outside the
triangle, one can use this second figure
and exactly the same proof to conclude
that AB and AC are the differences of
equal segments AF = AG and BF = CG,
hence equal.

If E lands at the point D, or if the
angle bisector at A is parallel to the per-
pendicular to AB at D, the proof be-
comes even easier, and we leave it to
the reader.
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We still need to prove the following lemma.

Lemma 3.2 (Right-Angle-Side-Side) (RASS)
If two right triangles have two sides equal, not containing the right angle, they are

still congruent.

Proof This result, though not stated by
Euclid, is often useful. We give two
proofs. The first method is to use (1.47)
to conclude that the square on BC is
equal to the square on EF. Then BC =
EF, and we can apply (SSS) (1.8).

The second proof does not make use
of (I1.47) and the theory of area. Extend
FE to G and make EG = BC. Then the
triangles ABC and DEG are congruent
by SAS (1.4). Therefore, AC = DG. It
follows that DF = DG, so the triangle
DFG is isosceles. Therefore, the angles
at F and G are equal. Then the triangles
DEG and DEF are congruent by AAS
(1.26). But DEG is congruent to ABC, so
the two original triangles are congruent.

The Theory of Parallels

A D
{L &F
) C €

Book I of Euclid’'s Elements can be divided naturally into three parts. The first
part, (1.1)-(1.26), deals with triangles and congruence. The second part, (1.27)-
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(1.34), deals with parallel lines and their applications, including the well-known
(1.32) that the sum of the angles of a triangle is two right angles. The third part,
(1.35)-(1.48), deals with the theory of area.

Two lines are parallel if they never meet, even if extended indefinitely in
both directions (Definition 23). The fifth postulate gives a criterion for two lines
to meet under certain conditions, hence to be not parallel, so we often refer to
the fifth postulate as the parallel postulate. Euclid postponed using this postulate
as long as possible so that in fact, the first part of Book I about triangles and
congruence does not use the parallel postulate at all. It is first used in (1.29).
Let us examine closely Euclid’s theory of parallels and his use of the parallel
postulate.

The first result about parallel lines,

(1.27), says that if a line falling on two

other lines makes the alternate interior /
angles equal, then the lines are par-

allel. This is proved using (I.16): If not,

the lines would meet on one side or

the other, and would form a triangle ]

having an exterior angle equal to one /

of its opposite interior angles, which is

impossible.

The next result (1.28) is similar, and follows directly from this one using
vertical angles (I1.15) or supplementary angles (1.13).

The fifth postulate is used to prove the converse of (1.27), which is (1.29): If
the lines are parallel, then the alternate interior angles will be equal. For if
not, then one would be greater than the other, and so the sum of the interior
angles on one side of the transversal would be less than two right angles. In
this situation, the fifth postulate applies and forces the lines to meet, which is a
contradiction.

As for the existence of parallel lines,
Euclid gives a construction in (1.31) for P
a line through a point P, parallel to a I v
given line I. Draw any line through P,
meeting I, and then reproduce the angle

it makes with [ at the point P (1.23). It Y
follows from (1.27) that this line is par- /
allel to L.

Why does Euclid place this construction after (1.29), even though it does not
depend on (1.29) and does not make use of the parallel postulate? Presumably,
the answer, although Euclid does not say so, is that using (1.29) one can show
that this parallel just constructed is unique. If there were any other line parallel
to ! through P, it would make the same angle with the transversal (by (1.29)) and
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hence would be equal to this one. Thus using the parallel postulate we can
prove the following statement:

P. For each point P and each line [, there exists at most one line through P par-
allel to I.

This statement (P) is often called “Playfair's axiom,” after John Playfair
(1748-1819), even though it already appears in the commentary of Proclus. Of
course, in Euclid’s development of geometry, this is not an axiom, but a theorem
that can be proved from the axioms. Some authors, however, like to take the
statement (P) as an axiom instead of using Euclid’s fifth postulate. So I would
like to explain in what sense we can say that Euclid's fifth postulate is equivalent
to Playfair's axiom (P).

Since the parallel postulate plays such a special role in Euclid’s geometry, let
us make a special point of being aware when we use this postulate, and which
theorems are dependent on its use. Let us call neutral geometry the collection of
all the postulates and common notions except the fifth postulate together with all
theorems that can be proved without using the fifth postulate. Thus (1.1)-(1.28)
and (1.31) all belong to neutral geometry, while for example, (1.32) and (1.47) do
not belong to neutral geometry.

If we take neutral geometry and add back the fifth postulate, then we
recover ordinary Euclidean geometry, and we can prove (P) as a theorem as we
did above.

But now suppose we take neutral geometry and add (P) as an extra axiom.
We will show that in this geometry we can prove Euclid’s fifth postulate as a
theorem.

Indeed, suppose we are given two
lines I, m and a transversal n such that W
the two interior angles 1, 2 on the same
side are less than two right angles. Let
P be the intersection of the lines m and
n, and draw a line I’ through P, making
the alternate angle 3 equal to 1. This
is possible by (1.23), which belongs to
neutral geometry. Then by (1.27), which
also belongs to neutral geometry, I’ is
parallel to [.

Now, since 1+ 2 is less than two
right angles, it follows that 2 + 3 is less
than two right angles, and hence the
line I’ is different from m (1.13). Now we
can apply (P). Since I’ passes through P
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and is parallel to I, it must be the only line through P that is parallel to I. In par-
ticular, the line m, which is different from I, cannot be parallel to I, and so by
definition it must meet I. This proves the fifth postulate.

Thus in the presence of all the results of neutral geometry, we can use
Euclid's fifth postulate to prove Playfair's axiom, or we can use Playfair's axiom
to prove Euclid's fifth postulate. In this sense we can say that in neutral geome-
try, Euclid's fifth postulate is equivalent to Playfair’s axiom. This means that
adding either one of them as an additional assumption to neutral geometry will
give the same body of theorems as consequences.

The Theory of Area

In (1.35), Euclid says that two parallelo-

grams on the same base and in the same

parallels (this means their top sides lie A D = F
on the same line parallel to the base) .
are equal to each other. In the figure, - N\

the parallelogram ABCD is equal to the ——\€ \
parallelogram BCEF. Clearly, the paral- —_ \\

lelograms are not congruent.

Looking at the proof, which is ac-
complished by adding and subtract-
ing congruent figures, we conclude that B C
Euclid must be referring to the area of
the parallelograms when he says they
are equal. But he has not said what the
area of a figure is, so we must reflect a bit to see what he means.

Our intuitive understanding of area comes from high-school geometry,
where we learn that the area of a rectangle is the product of the lengths of two
perpendicular sides, the area of a triangle is one half the product of the lengths
of the base and the altitude, etc. The “area” of high-school geometry is a func-
tion that attaches to each plane figure a real number; the area of a nonover-
lapping union of figures is the sum of the areas, and so forth. Most likely no one
ever told you the definition of area, nor did they prove that such an area function
exists. Using calculus, you can define the area of a figure in the real Cartesian
plane using definite integrals, and in that way it is possible to prove that a suit-
able area function exists. But in Euclid’'s geometry there are no real numbers,
and we certainly do not want to use calculus to define the concept of area in
elementary geometry.

So what did Euclid have in mind? Since he does not define it, we will con-
sider this new equality as an undefined notion, just as the notions of congruence
for line segments and angles were undefined. We will call this new notion equal
content, to avoid confusion with other notions of equality or congruence. We do
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not want to use the word area, because this notion is quite different from our
common understanding of area as a function associating a real number to each
figure.

From the way Euclid treats this notion, it is clear that he regards it as an
equivalence relation, satisfying the common notions. In particular:

(a) Congruent figures have equal content.

(b) If two figures each have equal content with a third, they have equal content.

(c) If pairs of figures with equal content are added in the sense of being joined
without overlap to make bigger figures, then these added figures have equal
content.

(d) Ditto for subtraction, noting that equality of content of the difference does
not depend on where the equal pieces were removed.

(e) Halves of figures of equal content have equal content (used in the proof
of (1.37)). (Also, doubles of equals are equal, as a consequence of (c)
above.)

(f) The whole is greater than the part, which in this case means that if one
figure is properly contained in another, then the two figures cannot have
equal content (used in the proof of (1.39)).

In terms of the axiomatic development of the subject, at this point Euclid is
introducing a new undefined relation, and taking all the properties just listed as
new axioms governing this new relation. Later in this book (Section 22), we will
discuss Hilbert's reinterpretation of the theory of area where the relationship of
having equal content is defined, and all its properties proved, so that it does not
require the introduction of new axioms.

Now let us see what Euclid does with this purely geometric notion of equal
content of plane figures. In (1.35) he proves that the two parallelograms have
equal content (see diagram above) by first showing that the triangle ABE is
congruent to the triangle DCF, so they have equal content. Then by sub-
tracting the triangle DGE from each (in different positions!) and adding the tri-
angle BGC to each, he obtains the two parallelograms, which therefore have
equal content.

In (1.37) he shows that two triangles
ABC and DBC on the same base and in
the same parallels have equal content.
The method is to double ABC to get a
parallelogram EABC, and to double DBC \\‘

™
-
Lv]
-

to get a parallelogram DFBC.

By (1.35) the two parallelograms
have equal content, and then he applies B c
the axiom that halves of equals are
equal to conclude the triangles have
equal content.
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This is all that is needed to explain
Euclid’s beautiful proof of (1.47), the H
theorem of Pythagoras. The statement
of the theorem is that if ABC is a right
triangle, then the squares on the two K
legs together have equal content to the G
square on the hypotenuse. The proof A
goes like this. The triangle ABF is one
half of the square ABFG. This triangle F
ABF has equal content with the triangle
BFC by (1.37). The triangle BFC is con- B M <
gruent to the triangle BAD. And BAD
has equal content to the triangle BMD
by (1.37). This latter triangle is equal to
one-half of the rectangle BDLM. Hence
the square ABFG has equal content to
the rectangle BDLM. Doing the same c
construction on the other side and add- b L
ing, one has the result.

Euclid’s statement of (1.47) in terms of equal content of the squares con-
structed on the sides of the triangle may come as a surprise to the modern
student who remembers the formula a? + b? = ¢* (which I suppose in the minds
of the general public is rivaled in fame only by Einstein's famous formula
E = mc?). We are used to thinking of a, b, ¢ as the lengths of the sides of the tri-
angle, in which case the theorem becomes an equation among real numbers.
How can we reconcile these two points of view?

The modern answer to this question, which we will discuss in more detail
later (Section 23), is that after introducing coordinates in our geometry we can
prove the existence of an area function. The area of a square of side a will be a®.
Furthermore, we will show that having equal content in the sense of Euclid is
equivalent to having equal area in the sense of the area function. Then the two
formulations of the theorem of Pythagoras become equivalent.

This answer makes sense only when we are able to assign numerical lengths
to arbitrary line segments, which the Greeks could not do. Yet there is ample
evidence that the Greeks did know special cases of this formula when a, b, ¢ are
integers. The equation 3 + 4 = 5? was known to the Egyptians, and Proclus in
his note on (1.47) mentions two general formulas for generating such “Pythagor-
ean triples” of integers, which he ascribes to Plato and to Pythagoras. So we can
presume that the Greeks knew some particular right triangles with integer sides,
in which case (1.47) can be represented by the equation among integers
a’ + b* = ¢*. But the geometrical proof given by Euclid is then more general,
because it applies to all triangles, and not just those for which one can find
integers to fit the sides.
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Euclid’s theory of area plays an important role in the succeeding books of the
Elements. It appears not only in results that correspond to our modern notion of
area, but also in results, such as the construction of the regular pentagon (IV.11),
which at first sight appear to have nothing to do with area. Roughly speaking,
Euclid uses arguments involving areas in places where we would expect to see a
quadratic equation in analytic geometry. He can add two line segments to get
another line segment, but there is no way to multiply line segments so as to
get another line segment. Instead, one can regard the rectangle with sides
equal to segments AB, CD as a product of these two segments. The results
(1.42)-(1.45) on application of areas and all the results of Book II give a certain
flexibility in manipulating and comparing different areas. This creates a sort
of “algebra of areas,” and one can regard results such as (11.14) as equivalent
to the solution of certain quadratic equations. Note also the essential use of
area in the proof of (V1.1), which is the cornerstone of Euclid’s theory of similar
triangles.

Exercises

3.1 Explain what is wrong with the “proof” in (Example 3.1). (Hint: Draw an accurate
figure.)

3.2 Read Euclid (1.35)-(1.48), Book II, and (II1.35)-(II1.37). Be prepared to present
proofs of (1.35), (1.41), (1.43), (1.47), (IL6), (IL.11), and (II1.36).

D
3.3 Given a triangle ABC and given a seg- A
ment DE, construct a rectangle with -
content equal to the triangle ABC, and =
with one side equal to DE.
B =, C

3.4 Given a rectangle, construct a square with the same content.

3

3.5 Given a line | and given two points A, B
not on I, construct a circle passing A
through A, B and tangent to L (Hint: '
Use (I11.36) and/or (111.37).) (Par = 14.)
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3.6

3.7

3.8

3.9

3.10

1. Euclid’s Geometry

Given two lines I, m and a point P not
on either line, construct a circle pass-
ing through P and tangent to both [
and m.

%S

In the following exercises, give proofs based on results of Euclid, Books I-III only.

Given a triangle ABC, let DE be a line
parallel to the base BC, let F be the
midpoint of DE, and let AF meet BC in
G. Prove that G is the midpoint of BC.
(Hint: Draw some extra lines to make
parallelograms, and use (1.43).)

Let I" be a circle with center O. Let AB
and AC be tangents to I" from a point A
outside the circle. Let BC meet OA at
D. Prove that OA x OD = OB” (mean-
ing the rectangle on OA and OD has
equal content to the square on OB).

Let ABC be a right triangle, and let AD
be the altitude from the right angle A to
the hypotenuse BC. Prove that AD? =
BD x DC (in the sense of content).

Problem: Given a triangle ABC, and
given a point D on BC, to draw a line
through D that will divide the triangle
into two pieces of equal content.

Solution (Peletier): Let E be the mid-
point of BC. Draw AD; draw EF parallel
to AD. Then DF divides the triangle in
half.

Prove that the content of the quadrilat-
eral ABDF is equal to the content of the
triangle DFC.

B
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3.11 (Campanus). Use the theory of content
to show that the line DE joining the
midpoint of two sides of a triangle is
parallel to the third side. (Hint: Draw D €
BE and DC. Show that the triangles
BDC and BEC have the same content
and then apply (1.39).)

4 Construction of the Regular Pentagon

One of the most beautiful results in all of Euclid’'s Elements is the construction of
a regular pentagon inscribed in a circle (IV.11). The proof of this construction
makes use of all the geometry he has developed so far, so that one could say that
to understand fully this single result is tantamount to understanding all of the
first four books of Euclid’s geometry. It also raises questions of exposition that are
central to our modern examination of Euclid’s methods. For example, why does
Euclid use the theory of area in proving a result about the sides of a polygon?

In this section we will present Euclid’s construction of the regular pentagon,
and begin discussing the issues raised by its proof. Later (see (13.4), Exercise
20.10, (29.1)), we will give other proofs using similar triangles or the complex
numbers. Euclid’s original geometric proof must be regarded as a tour de force
of classical geometry. It depends on the theory of area, which we will discuss in
more detail in Section 22. So this section can be regarded as a taste of things to
come: a first meeting with one of the deeper topics that is central to Euclid’s
geometry.

The key point of the construction of the pentagon is the following problem.

Problem 4.1
To construct an isosceles triangle whose base angles are equal to twice the vertex
angle.

Construction ((I1.11), (IV.10))
Let A, Bbe two points chosen at random.
1. Draw line AB.

Next, construct a perpendicular to AB at A, as follows:



Circle AB, get C.
Circle BC.
Circle CB, get D.

; J
5. Line AD, get E. =
Next, we bisect AE as follows

6. Circle EA, get F, G. c A ¢ 3

H A’
L

€
<

oW

Now comes the unusual part of the
construction:

7. Line FG, get H. \
8. Circle HB, get J.
9. Circle AJ, get K.

10. Circle center B, radius AK, get L.

11. Line AL.
12. Line BL.

Then AABL is the required triangle. The
angles at B and at L will be equal to >

twice the angle at A.

Proof From a modern point of view, it would seem that some theory of qua-
dratic equations is essential for the proof. Euclid did not have any algebra avail-
able to him, but he was able to deal with quantities essentially equivalent to
quadratic expressions via the theory of area. We can think of a rectangle as rep-
resenting the product of its sides, or a square as the square of its side. These
areas, without even assigning a numerical value to them, can be manipulated
by cutting up and adding or subtracting congruent pieces. In this way Euclid
establishes a “geometrical algebra” for manipulating these quantities (always by
geometrical methods), which acts as a substitute for our modern algebraic
methods.

Let us then trace the steps by which Euclid proves (IV.10), which is the key
point in the construction of the regular pentagon. In Book I, especially (1.35)-
(1.47) he discusses the areas of triangles and parallelograms, leading up to the
famous Pythagorean theorem (1.47), which is stated in terms of area: The square
built on the hypotenuse of a right triangle has area equal to the combined areas of
the squares on the two sides. The theorem is proved by cutting these areas into
triangles, and proving equality of areas using the cutting and pasting methods
just developed. Here area is understood in the sense of content—cf. Section 3.

Book II contains a number of results of geometrical algebra, as described
above, all stated and proved geometrically in terms of areas. In particular, (I1.5),
(11.6), and (I1.11) are used in the proof of (IV.10). Note that (II1.11), which is
sometimes called the division of a segment in extreme and mean ratio, states
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that the interval AB is divided by a point K (in our notation (4.1) above) such
that the rectangle formed by BK and AB has area equal to the square on AK. In
this way the property of extreme and mean ratio is expressed using area.

From Book I1I we need (111.36) and
its converse (II1.37). Proposition (II1.36)
says that if a point A lies outside a cir-
cle, and if AB is tangent to the circle at
B, and if ACD cuts the circle at C and D,
then the rectangle formed by AC and
AD has area equal to the square on AB.
This result is proved by several applica-
tions of (11.6) and (1.47).

Now Euclid can prove (IV.10) by
a brilliant application of (II1.37). Let
A, K, B, L be as in the construction (4.1)
above. Then by (II.11), the rectangle
with sides BK and BA has area equal to
the square on AK. Since BL was con-
structed equal to AK, this is also equal
to the square on BL.

Now consider the circle passing
through the three points A, K, L. Since
the rectangle on BK and BA is equal to
the square on BL, it follows that BL is
tangent to this circle (111.37)!

Hence the angle / BLK formed by the tangent BL and the line LK is equal to
the angle o at A, which subtends the same arc (I11.32). Let £ KLA =4. Then
/. BKL is an exterior angle to the triangle AAKL, so / BKL = o+ ¢ (1.32). But
/. BLK = o, so «+J =/ BLA, and this angle is f because AABL is isosceles.
Hence /BKL = ff. Now it follows that ABKL is isosceles, so KL = BL = AK.
Hence AAKL is also isosceles, so d = «. Now ff = / BLA = 2« as required.

Once we have the isosceles triangle constructed in (4.1), the construction of
the pentagon follows naturally. The idea is to inscribe in the circle a triangle
equiangular with the given triangle, and then to bisect its two base angles.

Problem 4.2

Given an isosceles triangle whose base angles are equal to twice its vertex angle,
and given a circle with its center, to construct a regular pentagon inscribed in
the circle.
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Construction ((IV.2) and (1V.11))

Let AABC be the given triangle and let O be the center of the given circle. The
first part of the construction is to obtain a tangent line to the circle. Let D be any
point on the circle.

Line OD.

Circle DO, get E.
Circle EO.
Circle OE, get F.
Line DF.

Ul e

Then DF will be a tangent line. Next, we reproduce the angle f from the base of
the isosceles triangle at D, on both sides.

6. Circle BC, get G.
7. Circle at D with radius equal to BC, get H, I.
8. Circle center H, radius CG, get K.
9. Circle center I, radius CG, get L.
10. Line DK, get M.
11. Line DL, get N.
12. Line MN.

™M

-
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Then ADMN is a triangle inscribed in the circle, equiangular with AABC. Next
we bisect the angles at M, N. Let P be the intersection of MN with DO.

13. Circle MP, get Q.
14. Circle NP, get R.
15. Circle PR.

16. Circle RP, get S.
17. Circle QP, get T.
18. Line NS, get U.
19. Line MT, get V.

Then D, M, N, U, V will be the vertices of the pentagon.

20. Line DU.
21. Line UM.
22. Line DV.
23. Line VN.

Then DUMNYV is the required pentagon.

Proof We follow the geometric proof given by Euclid. First of all, the line DF is
constructed perpendicular to a diameter of the circle, so it is a tangent line to
the circle (111.16). Next, the triangles ADHK and ADLI are constructed so that
their three sides are equal to the three sides of ABCG. Hence by (SSS) = (1.8), it
follows that /. KDH and / LDI are both equal to the angle f of the triangle AABC
at B. From there it follows that the angles of ADMN at M and N are both equal to
f, because they subtend the same arcs cut off by the tangent line and the angles
B just constructed (111.32). Since the sum of the three angles of a triangle is con-
stant = 180° (1.32), it follows that the triangle ADMN is equiangular with the tri-
angle AABC. In particular, if o is the angle at D, then f = 2a.

The points U, V are constructed by taking the angle bisectors of ADMN at M
and N. Since the angles at M and N are f, their halves are equal to «. Thus the
arcs DU, UM subtend angles « at N; the arc MN subtends an angle « at D; and
the arcs DV, VN subtend angles o« at M. Hence these five arcs are all equal
(I11.26), and the line segments on them are also equal. So we have constructed
an equilateral pentagon inscribed in the circle. The angle subtended by each
side at the center of the circle will be 2« = f. It follows that the angles of the
pentagon are also equal, so the pentagon is regular in the sense that its sides are
all equal and its angles are all equal.

This completes the presentation of Euclid's construction of the pentagon. As
usual, his method is adapted to economy of proof, not economy of steps used.
The whole construction, as we have presented it here, takes 12 + 23 = 35 steps.
By collapsing separate parts of the construction, in particular, by constructing
the triangle of (4.1) on a radius of the given circle, one can make a construction
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with fewer than half as many steps (cf. (4.3)). Note also that Euclid’s construc-
tion of the points U, V by bisecting the angles at M, N makes possible his elegant
proof that the five sides of the pentagon are equal. However, in retrospect we
see that MN is actually one side of the pentagon, so U and V could have been
constructed in a single step by a circle with center D and radius MN.

If there is such a thing as beauty in a mathematical proof, I believe that this
proof of Euclid’s for the construction of the regular pentagon sets the standard
for a beautiful proof. In the words of Edna St. Vincent Millay, “Euclid alone has
looked on beauty bare.”

Now let us use the ideas of Euclid’s method to construct a pentagon in as few
steps as possible.

Problem 4.3
Given a circle with center O, construct a regular pentagon inscribed in the circle

in as few steps as possible.
K ’_\

n T

1. Draw any line through O. Get A, B. \
2. Circle AB.
3. Circle BA, get C. B 0 A
4. OC, get D.
5. Circle DO. Get E, F.
6. EF, get G. £ G
7. Circle GA, get H. / F
8. Circle center A, radius OH, get I, J. \ T
9. Circle center B, radius I], get K, L. /
10-14. Draw BK, KJ, JI, IL, LB. L 5
Then BKJIL is the required pentagon.

K

Exercises

4.1 Read Euclid, Book IV.
4.2 Explain why the construction of (Problem 4.3) gives a regular pentagon.

4.3 Given a circle, but not given its center, construct an inscribed equilateral triangle in
as few steps as possible (par = 7).
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4.4 Construct a square in as few steps as possible (par = 9).

4.5 Given a line segment AB, construct a regular pentagon having AB as a side
(par = 11).

4.6 Given a circle I' and given its center O, construct inside I' three equal circles, each
one tangent to 1" and to the other two (par = 13).
A

4.7 Let ABC be an equilateral triangle in-
scribed in a circle. Let D, E be the mid- ) € F
points of two sides, and extend DE to
meet the circle at F. Prove that E divides .
the segment DF in extreme and mean
ratio. Hint: Use (111.35).

4.8 Take a long thin piece of paper. Tie a simple overhand knot in the paper, and fold the
knot flat. Explain why the flat knot makes a regular pentagon.

5 Some Newer Results

In this section we mention some results of plane geometry that do not appear in
Euclid’s Elements but that can be proved using the methods developed in Books
I-1V. Some of these, such as the three altitudes of a triangle meeting in a point,
were known to the Greeks. Others, such as the Euler line and the nine-point
circle, were discovered only in the eighteenth and nineteenth centuries.

In some texthooks these results are proved using similar triangles. In Euclid’s
Elements, similar triangles do not appear until Book VI, using the theory of pro-
portion developed in Book V. In modern texts, similar triangles are defined by
comparing the lengths of the sides. Since we have not yet discussed either of
these techniques, we will use only the pure geometric methods of Books I-IV in
this section.

Two theorems taught in modern high-school geometry are that the angle
bisectors of a triangle meet in a point (the incenter of the triangle), and the per-
pendicular bisectors of the sides of a triangle meet in a point (the circumcenter
of the triangle). Although not explicitly stated by Euclid, these two results are
implicitly contained in (1V.4) and (IV.5).
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On the other hand, the theorems about the three medians and the three alti-
tudes of a triangle do not appear in Euclid, though they were known to Archi-
medes, so we will start with them.

Proposition 5.1 A

Let ABC be a triangle, and let D, E be

the midpoints of AB and AC, respectively.

Then the line DE is parallel to the base D

BC, and equal to one-half of it. In other

words, if F is the midpoint of BC, then /
B

DE = BF.

€
F \\c
Proof We begin with a slightly different
construction. Let D be the midpoint of
AB, and draw lines through D parallel to
AC and BC. Let them meet the opposite A
sides in points E’, F'. Since DE' is paral-
lel to BC, the angles at B and D are con-
gruent ((1.29): Here we use the parallel ,
postulate). Similarly, since AC is paral- D o € .
lel to DF', the angles at A and D are = )
equal.

Now AD = DB, and the angles of the B 1 C
triangle ADE’ and DBF’ at A and D are #
equal to those at D and B, respectively, \v
so by (ASA) (1.26), the triangles ADE’
and DBF' are congruent. We conclude
that AE’ ~ DF" and DE’ =~ BF’.

Now look at the parallelogram DE'F'C. By (1.34) the opposite sides are equal.
So DF' = E'C and DE' = F'C. Thus we see that E" and F’ are the midpoints of the
sides AC and BC. So E’ = E, the line DE’ is equal to the line DE, and therefore
DE is parallel to BC as claimed. Furthermore, we have seen that DE' =~ BF', and
F' is the midpoint of BC, so DE is equal to one-half of BC.
Corollary 5.2
Let ABC be a triangle, and let D, E, F be A
the midpoints of the three sides. Then the
sides of the triangle DEF are parallel to the

sides of ABC, and the four small triangles
formed are all congruent to each other.

Proof From the proposition it follows
that each side of the triangle DEF is par-
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allel to and equal to one-half of a side of the triangle ABC. Then by (SSS) (1.8) all
four small triangles are congruent.

Definition

We say a triangle ABC is congruent to the double of a triangle FED, in symbols
ABC = 2FED, if as in the diagram above, the three sides of ABC are double the
sides of FED, and the three angles of ABC are equal to the three angles of FED.

Proposition 5.3 (2ASA)

Let ABC and A’B'C’ be two triangles, and
assume that the angles at B and C are
equal to the angles at B' and C', and that
BC = 2B'C’'. Then the triangle ABC 1is
congruent to the double of A'B'C’.

Proof Let D, E, F be the midpoints of
the sides of ABC, and draw the triangle
DEF. Then from (5.2) we see that DE =
%BC =~ B'C’. Furthermore, because DE
is parallel to BC, the angles of the tri-
angle ADE at D and E are equal to the
angles at B’ and C’. Now by (ASA), the
triangle ADE is congruent to A'B'C’. But
ABC is a double of ADE, so ABC =~
2A'B'C.

Remark

One can easily prove other double congruence theorems corresponding to (SAS)
and (SSS) (see Exercises 5.1, 5.2). Of course, these are special cases of more
general theorems on similar triangles that we will discuss in Section 20.

Proposition 5.4
The medians (lines from a vertex to the midpoint of the opposite side) of a triangle
meet in a single point (called the centroid of the triangle).

Proof Let ABC be the triangle, let D, E

be the midpoints of AB and AC, and A

draw DE. Let the two medians BE and

CD meet at a point G. Since DE is par-

allel to BC (5.1), we find that /£ DEG = D £
/L CBG and (EDG=/BCG. On the

other hand, BC = 2DE (5.1). Therefore, G

we can apply the previous result (5.3)
and find that ABGC = 2AEGD.




In particular, BG = 2GE. Thus G can be described as the point on the median
BE that is % of the way from B to E. Reversing the roles of A and C would there-
fore show that the third median AF also passes through G. Thus all three me-
dians meet in the point G.

Corollary 5.5
The centroid G lies on each median % of the way from the vertex to the midpoint of
the opposite side.

Proof Follows from the proof of (5.4).

Proposition 5.6
The three altitudes (lines through a vertex, perpendicular to the opposite side) of a
triangle meet in a single point (the orthocenter of the triangle).

Proof Let ABC be the given triangle.
Draw lines through the vertices A, B, C,
parallel to the opposite sides, to form a
new triangle A'B'C’. By (1.34) applied to ¢~ A g
the parallelograms BCAC’ and BCB'A “ “ ’
we see that C'A = BC = AB’. Thus A is
the midpoint of B'C’, and similarly for
the other two sides of A'B'C".

On the other hand, the altitude AM B 5 -
of the triangle ABC is perpendicular to
BC, and hence also perpendicular to
B'C’. Thus we see that the altitudes of %
the triangle ABC are equal to the per-
pendicular bisectors of the sides of the
triangle A’B’'C’. Hence they meet in a
single point ((IV.5), cf. Exercise 1.9).

Proposition 5.7 (The Euler line)

In a triangle ABC, let O be the circumcenter, let G be the centroid, and let H be
the orthocenter. Then O, G, H lie on a line (called the Euler line of the triangle) and
GH = 20G.

Proof For the proof, let F be the midpoint of BC, draw the median AF, and let
the line OG meet the altitude AM in a point H'. Note that OF is perpendicular to
BC, since O is the circumcenter. Hence OF is parallel to AM. Therefore,
L. GAH' = ( GFO. Also, / AGH' = { FGO, since they are vertical angles (1.15). By
our previous result on the medians (5.5), AG = 2GF. Thus we can apply (2ASA)
(5.3) to conclude that AAGH’ = 2AFGO. It follows that GH' = 20G.
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Thus the point H' is characterized A
as that point on the ray OG such that
GH' = 20G. Now permuting the roles of
. . r
A, B, C, it follows that H' also lies on the A P
other altitudes of ABC, so H' = H is the 6
orthocenter and our conclusions O, G, H g [
a] b
(% F

collinear and GH = 20G follow.

By the way, this argument provides another independent proof of the fact
that the three altitudes meet in a point (5.6).

For our next results, we will introduce the very useful method of cyclic
quadrilaterals.

Definition
A cyclic quadrilateral is a set of four

e

points A, B, C, D lying in that order on A
a circle, together with the lines AB,
BC, CD, DA joining them. The lines AC
and BD are the diagonals of the cyclic C
quadrilateral.

The importance of cyclic quadrilat-
erals comes from the relationships be-
tween the various angles of the figure,
which characterize the property of the >

four points A, B, C, D lying on a circle.

Proposition 5.8

Let A, B, C, D be four points in the plane, with A, B both on the same side of the
line CD. Then A, B, C, D lie on a circle if and only if the angles / DAC and / DBC
are equal.

Proof 1f A, B, C, D lie on a circle, then B’ B
Euclid’s (I11.21) tells us that the angles
at A and B are the same, since they both A
subtend the same arc DC.
Conversely, suppose the angles at A
and B are equal. Draw the circle through
A, D, C (IV.5) and let it meet the line
BD at B'. (In our figure, B lies outside D \—/ c

the circle, but the argument will be
similar if B lies inside the circle.)
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Plate III. The frontispiece to Archimedes (1792). When the Socratic philosopher Aris-

tippus was shipwrecked on the shores of Rhodes, he saw geometrical figures in the sand
and exclaimed to his comrades: “There is hope: I see traces of men".
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Then by (I11.21), the angle at B’ is also equal to the angles at A and at B. If
B # B’, this contradicts (1.16), because the angle /. DB'C at B’ is an exterior angle
to the triangle BCB', and so must be greater than the opposite interior angle at B.
Hence B = B’, and all four points lie on the circle.

Theorem 5.9 (The nine-point circle)

In any triangle, the midpoints of the three sides, the feet of the three altitudes, and the
midpoints of the segments joining the three vertices to the orthocenter all lie on a
circle.

Proof Let ABC be the given triangle. Let D, E, F be the midpoints of the sides,
let K, L, M be the feet of the altitudes, let H be the orthocenter, and let P, Q, R
be the midpoints of the segments joining the three vertices to H. We must show
that D, E, F, K, L, M, P, Q, R all lie on a circle.

We make several uses of (5.1). Applied to the triangle ABC, we find that DE
is parallel to the base BC. Applied to the triangle BCH, we find that RQ is parallel
to the base BC. Hence DE is parallel to RQ. Now apply (5.1) to the triangle ACH.
We find that EQ is parallel to the base AH. Similarly, using the triangle ABH, DR
is parallel to AH. Hence EQ and DR are parallel. Furthermore, EQ and DR are
perpendicular to DE and RQ, since AH is perpendicular to BC. Thus DEQR is a
rectangle. If X is the center of this rectangle, then X is equidistant from the four
corners. Thus D, E, Q, R lie on a circle I' with center X. We will show that this
circle contains the other required points.

By (5.8), DLER is a cyclic quadrilateral, because the angles at D and L sub-
tending ER are both right angles. Since a circle is determined by three points
(I11.10), this circle is the same as the circle T'; in other words, L also lies on I'.

A
P L
K
f
D / €
X
a
AU
") M F C
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A similar argument shows that DKEQ is a cyclic quadrilateral, and so K lies
on I,

Now, shifting perspective so that AC is regarded as the base of the triangle,
the same argument shows that DPQF is a rectangle, with the same center X,
since X is the midpoint of DQ. Therefore, P and F also lie on I'.

Finally, MDPF is a cyclic quadrilateral for the same reasons as above, so M is
also on I'.

Proposition 5.10 (The orthic triangle)
Let ABC be any acute triangle, and let K, A
L, M be the feet of the altitudes of ABC.
Then the altitudes of ABC are the angle
bisectors of the orthic triangle KLM.

Proof We use cyclic quadrilaterals.
First, LMAB is a cyclic quadrilateral, K.
because the angles at L and M are
right. Hence a«=/AML is equal to o
j = L ABL. 3 b\ ™ ¢
Next, KLCB is a cyclic quadrilateral
because the angles at K and L are right. M
Hence f is equal to y = £ KCL.
Finally, MKAC is a cyclic quadrilateral because the angles at M and K are
right, so y is equal to d = /£ AMK.
Thus o = 4, so that the altitude AM of ABC is the angle bisector of the angle
/. KML in the orthic triangle. The same argument of course applies to the other
two altitudes.

Since the angle bisectors of AKLM meet in a point, this gives another proof
that the altitudes of AABC meet in a point.

We end this section with an ingenious construction given by Pappus in his
commentary on the lost book of Apollonius On Tangencies.

Problem 5.11
Given a circle I' and two points A, B, find a point C on the circle such that if the
lines CA, CB meet I' in further points D, E, then DE is parallel to AB.

Construction
Let I' be the given circle, with center O, and let A, B be the given points.

1. Line AB.
2. Circle AB, get F.
3. Line AF, get G.



5. Some Newer Results 50

The proof of this construction is Exer-
cise 5.11.

. Line CB, get E.

Circle AG, get H.

Line OH.

Circle O, any radius.

Circle H, same radius, get I, ].
Line 1], get K.

Circle KO, get D.

Line AD, get C.

Line DE is parallel to AB, as re-
quired.

Exercises

5.1

5.2

5.3

5.4

5.5

5.6

(2SAS) Suppose we are given two triangles ABC and A'B'C’. Assume that AB = 2A'B’
and AC = 2A'C’, and the angles at A and A’ are equal. Prove that AABC = 2AA'B'C’.

(28SS) Suppose we are given two triangles ABC and A'B'C’ and assume that
AB = 2A'B', AC = 2A'C’, and BC = 2B'C’. Prove that AABC = 2AA'B'C'.

Al \D 2

Let I, m, n be three parallel lines. Sup-
pose they cut off equal segments AB = 2 c -

BC on a transversal line. Show that the
segments DE, EF cut off by any other
transversal line are equal.

C F n

Given three line segments, make a ruler and compass construction of a triangle

whose medians are congruent to the three given segments. What condition on the
segments is necessary for this to be possible?

Let ABCD be a quadrilateral. Show that the figure formed by joining the midpoints
of the four sides is a parallelogram.

In any triangle, show that the center X of the nine-point circle lies on the Euler line
(Proposition 5.7), and is the midpoint of the segment OH joining the circumcenter O
to the orthocenter H.
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5.7

5.8

5.9

5.10

1. Euclid’s Geometry

Use cyclic quadrilaterals to give another
proof of Proposition 5.6, as follows. Let
ABC be the given triangle. Let the alti-
tudes BL and CK meet at H. Let AH
meet the opposite side at M. Then show
that AM L BC. (This proof is probably
the one known to Archimedes.)

Show that the opposite angles «, y of a
quadrilateral ABCD add to two right
angles if and only if A, B, C, D lie on a
circle.

Let AB be the diameter of a circle I
Show that a triangle ABC has a right
angle at C if and only if C lies on the
circle I'.

Let B, C and D, E lie on two rays
emanating from a point A. Show that
B, C, D, E lie on a circle if and only if
AB x AC = AD x AE (in the sense of
content).

m
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5.11

In the construction to Problem 5.11, prove that DE is parallel to AB.
Hint: First show that BCDH is a cyclic quadrilateral. Then draw DH, and compare
angles using (111.22) and (111.32).

In the construction to Problem 5.11, show that the circle through A, B, C is tangent
to I'. Thus this construction solves the problem, “given a circle I' and given two
points A, B, to find a circle passing through A, B, and tangent to I'." This is a special
case of the problem of Apollonius (Section 38).

(The Simson line). Let ABC be any tri-
angle. Let P be a point on the circum-
scribed circle of ABC. Let D, E, F be
the feet of the perpendiculars from P to
the sides of the triangle (extended as
necessary). Then D, E, F lie on a line.
(First proved by W. Wallace, 1799.)

(The Miquel point). Let ABC be a triangle. Let D, E, F be points on the sides of the
triangle. Show that the circles through ADE, BDF, and CEF all meet in a common
point G. Hint: Let G be the intersection of the first two circles, then show that CEGF
is a cyclic quadrilateral (due to A. Miquel, 1838).

A




62 1. Euclid’s Geometry

5.15 (Pappus's theorem). Let A, B, C be

points on a line [, and let A', B, C'
be points on a line m. Assume that
AC'||A'C and B'C|BC’'. Show that
AB'||A'B. Hint: Draw a circle through
A,B' €' meeting [ in D. Then use cyclic
quadrilaterals (cf. Hilbert, Foundations,
Section 14).

B’\\‘_‘_"/C, A."\

5.16 Construct three circles of different radii, each one tangent to the other two, with
noncollinear centers, in as few steps as possible (par = 7).

5.17 Let A, B, C, D be four points on a circle
I'. Let four more circles pass through
AB, BC, CD, DA, respectively, meeting
in further points A', B', C", D'. Show that
A'B'C'D' is a cyclic quadrilateral.

5.18 (Painting the plane). 1f the plane has been colored so that each point has one of
three colors (red, yellow, blue), prove that for any interval AB there exist two points
C, D of the same color, with AB = CD. (It is an unsolved problem whether the same
result is true for four colors.)

A

5.19 Given an angle with vertex O and a
point P inside the angle, drop perpen-
diculars PA, PB to the two sides of the c P
angle, draw AB, and drop perpendicu-
lars OC, PD to the line AB. Then show
that AC = BD. o) D
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5.20 Given any triangle ABC, let D, E, F be the feet of the altitudes. Show that the
six projections G, H, I, J, K, L of D, E, F onto the other sides of the triangle lie on a

circle.

5.21 (Wentworth). Let ABC be a triangle. Construct with ruler and compass a line parallel
to BC, meeting AB in D and AC in E, such that DE = DB + EC.

In England the text-book of Geometry con-
sists of the Elements of Euclid; for nearly every
official programme of instruction or examina-
tion explicitly includes some portion of this
work. Numerous attempts have been made to
find an appropriate substitute for the Elements
of Euclid; but such attempts, fortunately, have
hitherto been made in vain. The advantages at-
tending to a common standard of reference in
such an important subject, can hardly be over-
estimated; and it is extremely improbable, if
Euclid were once abandoned, that any agree-
ment would exist as to the author who should
replace him.

- from the preface to
Todhunter's Euclid
London (1882)







Hilbert's Axioms

CHAPTER

ur purpose in this chapter is to present (with minor
modifications) a set of axioms for geometry proposed
by Hilbert in 1899. These axioms are sufficient by
modern standards of rigor to supply the foundation
tor Euclid’s geometry. This will mean also axiomatiz-
ing those arguments where he used intuition, or said
nothing. In particular, the axioms for betweenness,
% based on the work of Pasch in the 1880s, are the most
4 striking innovation in this set of axioms.

Another choice has been to take the SAS theorem as an axiom, and thus
bypass the method of superposition. It is possible to go the other route, and use
motions of figures as a basic building block of geometry. This is what Hadamard
does in his Lecons de Géométrie Elémentaire (1901-06), but the result is a step
backward in logical clarity, because he never makes precise exactly what kind of
motions he is allowing. See, however, Section 17 for a fuller discussion of rigid
motions and SAS.

The first benefit of establishing the new system of axioms is, of course, to
vindicate Euclid’s Elements, and thus establish “Euclidean” geometry as a rigo-
rous mathematical discipline. A second benefit is to pose carefully those prob-
lems that have bothered geometers for centuries, such as the question of the
independence of the parallel postulate. Unless one has an exact understanding
of precisely what is assumed and what is not, one risks going around in circles
discussing these questions. In the development of our geometry with the new

65
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axioms, we will keep the parallel postulate separate and note carefully what
depends on it and what does not.

Besides presenting the axioms, this chapter will also contain the first con-
sequences of the axioms, including different proofs of some of Euclid's early
propositions, until we have established enough so that Euclid's later results can
be deduced without difficulty from the new foundations we have established. In
Sections 10, 11, 12, we show how to recover all the results of Euclid, Books -1V,
except for the theory of area, whose proof is postponed until Chapter 5.

6 Axioms of Incidence

The axioms of incidence deal with points and lines and their intersections. The
points and lines are undefined objects. We simply postulate a set, whose ele-
ments are called points, together with certain subsets, which we call lines. We do
not say what the points are, nor which subsets form lines, but we do require that
these undefined notions obey certain axioms:

I1. For any two distinct points A, B, there exists a unique line [ containing A, B.

I2. Every line contains at least two points.

13. There exist three noncollinear points (that is, three points not all contained
in a single line).

Definition
A set whose elements are called points, together with a set of subsets called
lines, satisfying the axioms (I1), (12), (13), will be called an incidence geometry.
It a point P belongs to a line I, we will say that P lies on [, or that [ passes
through P.

From this modest beginning we cannot expect to get very interesting results,
but just to illustrate the process, let us see how one can prove theorems based
on these axioms.

Proposition 6.1
Two distinct lines can have at most one point in common.

Proof Letl, m be two lines, and suppose they both contain the points A, B, with
A # B. According to axiom (I1), there is a unique line containing both A and B,
s0 [ must be equal to m.

Note that this fact, which was used by Euclid in the proof of (1.4) with the
rather weak excuse that “two lines cannot enclose a space,” follows here from
the uniqueness part of axiom (I1). This should indicate the importance of stat-
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ing explicitly the uniqueness of an object, which was rarely done in Euclid’s
Elements.

Now we have an axiom system, consisting of the undefined sets of points
and lines, and the axioms (11)-(13). A model of that axiom system is a realization
of the undefined terms in some particular context, such that the axioms are sat-
isfied. You could also think of the model as an example of the incidence geometry
defined above.

Example 6.1.1 (The real Cartesian
plane).

Here the set of points is the set R? of
ordered pairs of real numbers. The lines { by, L,_}
are those subsets of points P = (x, y) that
satisty a linear equation ax+ by +c =10 (a”q,,}
in the variables x, y. To verify that the
axioms hold, for (11) think of the “two-
point formula” from analytic geometry:
Given two points A = (a),a;) and B =
(b1,bz). They lie on the line

}?2 — {7

(x —a)

Y —dy = by —a
if a1 # by; if a1 = by, they lie on the line x = a;. To verify (12), take any linear
equation involving y. Substitute two different values of x, and solve for y. This
gives two points on the line. If the equation did not involve y, say x = ¢, take
the points (¢,0) and (¢, 1). To verify (I3), consider the points (0,0),(0,1),
(1,0). One sees easily that there is no linear equation with all three points as
solutions.

Example 6.1.2
One can also make models out of finite A
sets. For example, let the set of points
be a set of three elements {A, B, C}, and
take for lines the subsets {A,B}, {A, C},
and {B,C}. We represent this symboli-
cally by the diagram, where the dots B c.
represent the elements of the set, and
the lines drawn on the page show which A
subsets are to be taken as lines.
This diagram should be understood as purely symbolic, however, and has
nothing to do with a triangle in the ordinary Cartesian plane. The verification of
the axioms in this case is trivial.
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Definition
Two distinct lines are parallel it they have no points in common. We also say
that any line is parallel to itself.

The parallel postulate, in its equivalent form given by Playfair, can be stated
as a further axiom about incidence of lines. However, we do not include this
axiom in the definition of incidence geometry. Thus we may speak of an inci-
dence geometry that does or does not satisfy Playfair's axiom.

P. (Playfair's axiom, also called the parallel axiom). For each point A and each
line I, there is at most one line containing A that is parallel to [

Note that the real Cartesian plane (6.1.1) satisfies (P), as you know, and the
three-point geometry (6.1.2) satisfies (P) vacuously, because there are no distinct
parallel lines at all. Next we give an example of an incidence geometry that does
not satisty (P).

Example 6.1.3 A
Let our set consist of five points A, B, C,
D, E, and let the lines be all subsets of E
two points. It is easy to see that this ge-
ometry satisfies (11)-(13). However, it
does not satisfy (P), because, for exam-
ple, AB and AC are two distinct lines
through the point A and parallel to the
line DE. D c

Remember that the word parallel simply means that two lines have no points
in common or are equal. It does not say anything about being in the same
direction, or being equidistant from each other, or anything else.

We say that two models of an axiom system are isomorphic it there exists a
1-to-1 correspondence between their sets of points in such a way that a subset
of the first set is a line if and only if the corresponding subset of the second
set is a line. For short, we say 'the correspondence takes lines into lines.”
So for example, we see that (6.1.1), (6.1.2), and (6.1.3) are nonisomorphic models
of incidence geometry, for the simple reason that their sets of points have dif-
ferent cardinality: There are no 1-to-1 correspondences between any of these
sets.

On the other hand, we can show that any model of incidence geometry
having just three points is isomorphic to the model given in (6.1.2). Indeed, let
{1, 2,3} be a geometry of three points. By (13), there must be three noncollinear
points. Since there are only three points here, we conclude that there is no
line containing all three. But by (11), each subset of two points must be con-
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tained in a line. Thus {1,2},{2,3}, and {1, 3} are lines. Now by (12), every line
contains at least two points, so these are all the possible lines. In other words,
the lines are just all subsets of two elements. Since (6.1.2) also has this property,
any 1-to-1 correspondence between the sets {A, B, C} and {1,2,3} will give an
isomorphism.

By the way, this proof shows that the isomorphism just found is not unique.
There are six choices. This leads to the notion of automorphism.

Definition

An automorphism of an incidence geometry is an isomorphism of the geometry
with itself, that is, it is a 1-to-1 mapping of the set of points onto itself, preserving
lines.

Note that the composition of two automorphisms is an automorphism, and
so is the inverse of an automorphism. Thus the set of automorphisms forms a
group. In the example above, any 1-to-1 mapping of the set of three elements
onto itself gives an automorphism of the geometry, so we see that the group of
automorphisms of this geometry is the symmetric group on three letters, Ss.

An important question about a set of axioms is whether the axioms are inde-
pendent of each other. That is to say, that no one of them can be proved as a
consequence of the others. For it one were a consequence of the others, then we
would not need that one as an axiom. To try to prove directly that axiom A is
not a consequence of axioms B,C, D, ... is usually futile. So instead, we search
for a model in which axioms B, C, D, ... hold but axiom A does not hold. It such
a model exists, then there can be no proof of A as a consequence of B,C, D, ...,
so we conclude that A is independent of the others. This process must be re-
peated with each individual axiom, to show that each one is independent of
all the others. With a long list of axioms this can become tedious and difficult,
so we will forgo the process with our full list of axioms. But as an illustra-
tion of what is involved, let us show that the axioms (I1), (12), (13), and (P) are
independent.

Proposition 6.2
The axioms (11), (12), (13), (P) are independent of each other.

Proof We have already seen that (6.1.3) is a model satisfying (11), (12), (13), and
not (P). Hence (P) is independent of the others.

For a model satisfying (11), (12), (P), and not (13), take a set of two points and
the one line containing both of them.
Note that (P) is satisfied trivially, be- A B
cause there are no points not on the * ¢
line 1.




70 2. Hilbert's Axioms

For a model satisfying (11), (13), (P), A

and not (12), take a set of three points

A,B,C, and for lines take the subsets

{A.B},{A,C},{B,C}, and {A}. The ex-

istence of the one-point line {A} con- B C
tradicts (I12). Yet (P) is still fulfilled, I A\
because that one-point line is then the

unique line through A parallel to {B, C}.

For a model satisfying (12), (13), (P) A,
and not (I1), just take a set of three
points and no lines at all. % . ¢

While we are discussing axiom systems, there are a few more concepts we
should mention. An axiom system is consistent it it will never lead to a contra-
diction. That is to say, if it is not possible to prove from the axioms a statement
A and also to prove its negation not A. This is obviously a highly desirable
property of a system of axioms. We do not want to waste our time proving theo-
rems from a system of axioms that one day may lead to a contradiction. Un-
fortunately, however, the logician Kurt Gédel has proved that for any reasonably
rich set of axioms, it will be impossible to prove the consistency of that system.
So we will have to settle for something less, which is relative consistency. As soon
as you can find a model for your axiom system within some other mathematical
theory T, it follows that if T is consistent, then also your system of axioms is
consistent. For any contradiction that might follow from wyour axioms would
then also appear in the theory T, contradicting its consistency. So for example,
if you believe in the consistency of the theory of real numbers, then you must
accept the consistency of Hilbert's axiom system for geometry, because all of his
axioms will hold in the real Cartesian plane. That is the best we can do about the
guestion of consistency.

Another question about a system of axioms is whether it is categorical. This
means, does it describe a unique mathematical object? Or in other words, is
there a unigue model (up to isomorphism) for the system of axioms? In fact, it
will turn out that if we take the entire list of Hilbert's axioms, including the par-
allel axiom (P) and Dedekind's axiom (D), the system will be categorical, and the
unique model will be the real Cartesian plane. (We will prove this result later
(21.3).) Also, if we take all of Hilbert's axioms, together with (D) and the hyper-
bolic axiom (L) (see Section 40), we will have another categorical system, whose
unique model is the non-Euclidean Poincaré model over the real numbers (Ex-
ercise 43.2).

However, from the point of view of this book, it is more interesting to have
an axiom system that is not categorical, and then to investigate the different
possible geometries that can arise. Therefore, we will almost never assume
Dedekind's axiom (D), and we will only sometimes assume Archimedes’ axiom
(A), or the parallel axiom (P).
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Finally, one can ask whether the axiom system is complete, which means, can
every statement that is true in every model of the axiom system be proved as a
consequence of the axioms? Again, Godel has shown that any axiomatic system
of reasonable richness cannot be complete. For a fuller discussion of these
questions, see Chapter 51 of Kline (1972) on the foundations of mathematics.

Exercises

6.1

6.2

6.3

6.4

6.5

Describe all possible incidence geometries on a set of four points, up to iso-
morphism. Which ones satisty (P)?

The Cartesian plane over a field F. Let F be any field. Take the set F? of ordered
pairs of elements of the field F to be the set of points. Define lines to be those subsets
defined by linear equations, as in Example 6.1.1. Verity that the axioms (11), (12),
(13), and (P) hold in this model. {See Section 14 for more about Cartesian planes
over fields.)

A projective plane is a set of points and subsets called lines that satisty the following
four axioms:

P1. Any two distinct points lie on a unique line.
P2. Any two lines meet in at least one point.
P3. Every line contains at least three points.
P4. There exist three noncollinear points.

Note that these axioms imply (11)-(13), so that any projective plane is also an inci-
dence geometry. Show the following:

(a) Every projective plane has at least seven points, and there exists a model of a
projective plane having exactly seven points.

(b) The projective plane of seven points is unique up to isomorphism.

(c) The axioms (P1), (P2), (P3), (P4) are independent.

Let Fbe a field, and let V = I3 be a three-dimensional vector space over F. Let 11 be
the set of 1-dimensional subspaces of V. We will call the elements of 11 “points.” So a
“point” is a 1-dimensional subspace P < V. If W < V is a 2-dimensional subspace of
Vv, then the set of all "points” contained in W will be called a "line." Show that the set
IT of "points" and the subsets of “lines” forms a projective plane (Exercise 6.3).

An affine plane is a set of points and subsets called lines satistying (11), (12), (13), and
the following stronger form of Playfair's axiom.

P’. For every line I, and every point A, there exists a unique line m containing A
and parallel to 1.

(a) Show that any two lines in an affine plane have the same number of points (i.e.,
there exists a 1-to-1 correspondence between the points of the two lines).
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(b) If an affine plane has a line with exactly n points, then the total number of
points in the plane is n?.

(c) If Fis any field, show that the Cartesian plane over F (Exercise 6.2) is a model of
an affine plane.

(d) Show that there exist atfine planes with 4, 9, 16, or 25 points. (The nonexistence
of an affine plane with 36 points is a difficult result of Euler.)

In an incidence geometry, consider the relationship of parallelism, “l is parallel to
m,” on the set of lines.

a) Give an example to show that this need not be an equivalence relation.

¢) Conversely, if parallelism is an equivalence relation in a given incidence geom-

(
(b) If we assume the parallel axiom (P), then parallelism is an equivalence relation.
(
etry, then (P) must hold in that geometry.

Let Il be an affine plane (Exercise 6.5). A pencil of parallel lines is the set of all the
lines parallel to a given line {including that line itself). We call each pencil of paral-
lel lines an “ideal point,” or a “point at infinity," and we say that an ideal point "lies
on" each of the lines in the pencil. Now let 11" be the enlarged set consisting of 11
together with all these new ideal points. A line of [1" will be the subset consisting of
a line of Il plus its unique ideal point, or a new line, called the “line at infinity,"
consisting of all the ideal points.

(a) Show that this new set 1" with subsets of lines as just defined forms a projective
plane (Exercise 6.3).

(b) If I1 is the Cartesian plane over a field F'( Exercise 6.2), show that the associated
projective plane I1’ is isomorphic to the projective plane constructed in Exercise
6.4.

If there are n+ 1 points on one line in a projective plane I1, then the total number
of points in 11 is n® + n+ 1.

Kirkman's schoolgirl problem (1850) is as follows: In a certain school there are 15
girls. It is desired to make a seven-day schedule such that each day the girls can
walk in the garden in five groups of three, in such a way that each girl will be in the
same group with each other girl just once in the week. How should the groups be
formed each day?

To make this into a geometry problem, think of the girls as points, think of the
groups of three as lines, and think of each day as describing a set of five lines, which
we call a pencil. Now consider a Kivkman geometry: a set, whose elements we call
points, together with certain subsets we call lines, and certain sets of lines we call
pencils, satistying the following axioms:

K1. Two distinct points lie on a unique line.
K2. Alllines contain the same number of points.
K3. There exist three noncollinear points.

K4. Each line is contained in a unique pencil.
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K5. Each pencil consists of a set of parallel lines whose union is the whole set of
points.

(a) Show that any affine plane gives a Kirkman geometry where we take the pencils
to be the set of all lines parallel to a given line. (Hence by Exercise 6.5 there exist
Kirkman geometries with 4, 9, 16, 25 points.)

(b) Show that any Kirkman geometry with 15 points gives a solution of the original
schoolgirl problem.

(c) Find a solution for the original problem. (There are many inequivalent solutions
to this problem.)

6.10 In a finite incidence geometry, the number of lines is greater than or equal to the
number of points.

7 Axioms of Betweenness

In this section we present axioms to make precise the notions of betweenness
(when one point is in between two others), on which is based the notion of
sidedness (when a point is on one side of a line or the other), the concepts of
inside and outside, and also the concepts of order, when one segment or angle is
bigger than another. We have seen the importance of these concepts in reading
Euclid's geometry, and we have also seen the dangers of using these concepts
intuitively, without making their meaning precise. So these axioms form an
important part of our new foundations for geometry. At the same time, these
axioms and their consequences may seem difficult to understand for many
readers, not because the mathematical concepts are technically difficult, but
because the notions of order and separation are so deeply ingrained in our daily
experience of life that it is difficult to let go of our intuitions and replace them
with axioms. It is an exercise in forgetting what we already know from our inner
nature, and then reconstituting it with an open mind as an external logical
structure.

Throughout this section we presuppose axioms (I1)-(13) of an incidence
geometry. The geometrical notions of betweenness, separation, sidedness, and
order will all be based on a single undefined relation, subject to four axioms. We
postulate a relation between sets of three points A, B, C, called "B is between A
and C." This relation is subject to the following axioms.

Bl. If B is between A and C, (written A = B+ C), then A, B, C are three distinct
points on a line, and also C* B A.

B2. For any two distinct points A, B, there exists a point C such that A = B = C.

B3. Given three distinct points on a line, one and only one of them is hetween
the other two.
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B4. (Pasch). Let A,B,C be three non- A
collinear points, and let [ he a line ¢
not containing any of A,B,C. If [ D
contains a point D lying between
A and B, then it must also contain 3 C

either a point lying between A and
C or a point lying between B and C,
but not both.

Definition

If A and B are distinct points, we define the line segment AB to be the set con-
sisting of the points A, B and all points lying between A and B. We define a tri-
angle to be the union of the three line segments AB, BC, and AC whenever
A, B, C are three noncollinear points. The points A, B, C are the vertices of the

triangle, and the segments AB, BC, AC are the sides of the triangle.

Note: The segments AB and BA are the same sets, because of axiom (B1). The
endpoints A, B of the segment AB are uniquely determined by the segment AB
(Exercise 7.2). The vertices A, B,C, and the sides AB,AC, BC of a triangle ABC
are uniquely determined by the triangle (Exercise 7.3).

With this terminology, we can rephrase (B4) as follows: If a line I that does
not contain any of the vertices A, B, C of a triangle meets one side AB, then it
must meet one of the other sides AC or BC, but not both.

From these axioms together with the axioms of incidence (11)-(13) we will
deduce results about the separation of the plane by a line, and the separation of
a line by a point.

Proposition 7.1 (Plane separation)
Let 1 be any line. Then the set of points not lying on 1 can be divided into two non-
empty subsets 81, S; with the following properties:

(a) Two points A, B not on 1 belong to the 2
same set (81 or 8) if and only if the A
segment AB does not intersect 1.
(b) Two points A, C not on 1 belong to the
opposite sets (one tn 8y, the other in
S,) if and only if the segment AC in- {
tersects | in a point.

We will refer to the sets 81,8; as the
two sides of I, and we will say "A and B
are on the same side of 1" or "A and C
are on opposite sides of " C
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Proof We start by defining a relation ~ among points not on . We will say
A ~ B if either A = B or if the segment AB does not meet . Our first step is to
show that ~ is an equivalence relation. Clearly, A ~ A by definition, and A ~ B
implies B ~ A because the set AB does not depend on the order in which we
write A and B. The nontrivial step is to show the relation is transitive: If A ~ B
and B ~ C, we must show A ~ C.

Case 1 Suppose A,B,C are not col- A

linear. Then we consider the triangle

ABC. Since A ~ B, [ does not meet AB. B C
Since B ~ C, I does not meet BC. Now

by Pasch's axiom (B4), it follows that I £
does not meet AC. Hence A ~ C.

Case 2 Suppose A, B, C lie on a line m.

Since A, B, C do not lie on [, the line m is

different from [. Therefore [ and m can

meet in at most one point (6.1). But by

(I12) every line has at least two points.

Therefore, there exists a point D on [, D

not lying on m. ~
Now apply axiom (B2) to find a point E such that D= A = E. Then D, A E

are collinear (Bl); hence E is not on [, since A is not on [, and the line DAE

already meets [ at the point D. Furthermore, the segment AE cannot meet . For

if it did, the intersection point would be the unique point in which the line AE

meets [, namely D. In that case D would be between A and E. But we con-
structed E so that D* A % E, so by (B3), D cannot lie between A and E. Thus
AENI= &, so A ~ E. Note also that E does not lie on the line m, because if E
were on m, then the line AE would be equal to m, so D would lie on m, contrary
to our choice of D. Therefore, A,B, E are three noncollinear points. Then by
Case 1 proved above, from A ~E and A ~ B we conclude B ~ E. By Case 1
again, from B ~ E and B ~ C we conclude C ~ E. Applying Case 1 a third time to
the three noncollinear points A, C, E, from A ~ E and C ~ E we conclude A ~ C
as required.

Thus we have proved that ~is an equivalence relation. An equivalence
relation on a set divides that set into a disjoint union of equivalence classes,
and these equivalence classes will satisfy property (a) by definition. To complete
the proot it will be sufficient to show that there are exactly two equivalence
classes 81, S, for the relation ~. Then to say that AC meets [, which is equivalent
to A + C, will be the same as saying that A, C belong to the opposite sets.

By (13) there exists a point not on I, so there is at least one equivalence class
S). Given A € 8y, let D be any point on I, and choose by (B2) a point C such that
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A#* D=+ C. Then A and C do not satistfy ~, so there must be at least two equiva-
lence classes S; and S,.

The last step is to show that there are at most two equivalence classes. To do
this, we will show that if A + C and B + C, then A ~ B.

Case 1 1f A, B,C are not collinear, we A

consider the triangle ABC. From A + C ; f
we conclude that AC meets [. From

B+ C we conclude that BC meets I

Now by Pasch's axiom (B4) it follows C
that AB does not meet . So A ~B as

required.

Case 2 Suppose A, B, C lie on a line m. £
As in Case 2 of the first part of the proof g
above, choose a point D on [, not on m, A
and use (B2) to get a point E with £
DxA+E Then A ~E as we showed // D
above. <

Now, A + C by hypothesis, and A ~ E, so we conclude that C + E, since ~ is
an equivalence relation (if C ~E, then A ~ C by transitivity: contradiction).
Looking at the three noncollinear points B,C,E, from E + C and B+ C we
conclude using Case 1 that B ~ E. But also A ~ E, so by transitivity, A ~ B as
required.

Proposition 7.2 (Line separation)
Let A be a point on a line [ Then the set of points of [ not equal to A can be divided
into two nonempty subsets Sy, Sy, the two sides of A on [, such that

(a) B, C are on the same side of A if and

only if A is not in the segment BC; D A B C

(b) B, D are on opposite sides of A if " . . . 2
and only if A belongs to the segment
BD.

Proof Given the line [ and a point A on
I, we know from (13) that there exists a
point E not on [. Let m be the line con-
taining A and E. Apply (7.1) to the line
m. If m has two sides 8], §}, we define §; A £
and S; to be the intersections of S{ and

§) with I. Then properties (a) and (b)

follow immediately from the previous

proposition.
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The only mildly nontrivial part is to show that S, and §; are nonempty. By
(12), there is a point B on [ different from A. And by (B2) there exists a point D
such that B #+ A * D. Then D will be on the opposite side of A from B, and will lie

on [, so both sides are nonempty.

Now that we have some basic results on betweenness, we can define rays

and angles.

Definition
Gi@n two distinct points A, B, the ray
AB is the set consisting of A, plus all
points on the line AB that are on the
same side of A as B. The point A is the
origin, or vertex, of the ray. An angt’e_iaf
the union of two rays AB and AC
originating at the same point, its vertex,
and not lying on the same line. (Thus
there is no “zero angle,” and there is no
“straight angle” (180%).) Note that the
vertex of a ray or angle is uniquely de-
termined by the ray or angle (proof
similar to Exercises 7.2, 7.3).

The inside (or interior) of an angle
/. BAC consists of all points D such that
D and C are on the same side of the line
AB, and D and B are on the same side of
the line AC. If ABC is a triangle, the in-
side (or interior) of the triangle ABC is
the set of points that are simultaneously
in the insides of the three angles
[ BAG,/ ABC, [ ACB.

Proposition 7.3 (Crossbar theorem)
Let [ BAC be an angle, and let D be a
point in the interior of the angle. Then the
ray AD must meet the segment BC.

A \\\\\\\\\ ) C

C

Proof This is similar to Pasch's axiom (B4), except that we must consider a
line AD that passes through one vertex of the triangle ABC. We will prove it
with Pasch's axiom and several applications of the plane separation theorem

(7.1).
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Let us label the lines AB =1, AC =
m, AD = n. Let E be a point on m such
that E * A % C(B2). We will apply Pasch’s
axiom (B4) to the triangle BCE and the
line n. By construction n meets the side
CE at A. Also, n cannot contain B, be-
cause it meets the line [ at A. We will
show that n does not meet the segment
BE, so as to conclude by (B4) that it
must meet the segment BC.

So we consider the segment BE. This segment meets the line { only at B, so
all points of the segment, except B, are on the same side of I. By construction, C
is on the opposite side of [ from E, so by (7.1) all points of BE, except B, are on
the opposite side of [ from C. On the other hand, since D is in the interior of the
angle / BAC, all the points of the ray AD except 4, are on the same side of [ as
C. Thus the segment BE does not meet the ray AD .

A similar reasoning using the line m shows that all points of the segment BE,
except E, lie on the same side of m as B, while the points of the ray of n, opposite
the ray E, lie on the other side of m. Hence the segment BE cannot meet the
opposite ray to AD. Together with the previous step, this shows that the seg-
ment BE does not meet the line n. We conclude by (B4) that n meets the seg-
ment BC in a point F.

It remains only to show that F'is on the ray AD of the line n. Indeed, B and
F are on the same side of m, and also B and D are on the same side of m, so (7.1)
D and F are on the same side of m, and so D and F are on the same side of A on
the line n. In other words, F lies on the ray AD.

Example 7.3.1
We will show that the real Cartesian plane (6.1.1), with the “usual” notion of
betweenness, provides a model for the axioms (B1)-(B4).

First, we must make precise what we mean by the usual notion of between-
ness. For three distinct real numbers a,b,c € R, let us define a * b« ¢ if either
a<b<c¢or c<b<a Then it is easy to see that this defines a notion of
betweenness on the real line R that satisfies (B1), (B2), and (B3).

If A= (ay,a;), B= (b1,bh,), and C = (cy,c,) are three points in R? let us
define A # B+ C to mean that A, B,C are three distinct points on a line, and
that either a) = by *¢; or a; * by * ¢, or both. In fact, if either the x- or the y-
coordinates satisfy this betweenness condition, and if the line is neither hori-
zontal nor vertical, then the other coordinates will also satisfy it, because the
points lie on a line, and linear operations (addition, multiplication) of real num-
bers either preserve or reverse inequalities. Thus linear operations preserve be-
tweenness. So we can verify easily that this notion of betweenness in R? sat-
isfies (B1), (B2), and (B3).
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For (B4), let I be a line, and let A, B, C be three noncollinear points not on [.
The line [ is defined by some linear equation ax + by + ¢ = 0. Let ¢ : R* — R be
the linear function defined by ¢(x, y) = ax + by + ¢. Since ¢ is a linear function,
@ will preserve betweenness. For example, if [ meets the segment AB, then 0 will
lie between @(A) and ¢(B). In other words, one of ¢(A), ¢(B) will be positive and
the other negative. Suppose @¢(A) > 0 and ¢(B) < 0. Consider ¢(C). If p(C) > 0,
then [ will meet BC but not AC. If p(C) < 0, then [ will meet AC but not BC. This
proves (B4).

Exercises

7.1 Using the axioms of incidence and betweenness and the line separation property,
show that sets of four points A, B,C, D on a line behave as we expect them to with
respect to betweenness. Namely, show that

(a) A*B*Cand B C* D imply A *B#* D and A * Cx* D.
(b) A¥*BxDand B+ C+Dimply A*Bx C and A xC = D.

7.2 Given a segment AB, show that there do not exist points C,De AB such that
C = A % D. Hence show that the endpoints A, B of the segment are uniquely deter-
mined by the segment.

7.3 Given a triangle ABC, show that the sides AB, AC, and BC and the vertices A, B, C
are uniquely determined by the triangle. Hint: Consider the different ways in which
a line can intersect the triangle.

7.4 Using (11)-(13) and (B1)-(B4) and their consequences, show that every line has
infinitely many distinct points.

7.5 Show that the line separation property (Proposition 7.2) is not a consequence of
(B1), (B2), (B3), by constructing a model of betweenness for the set of points on
a line, which satisfies (B1), (B2), (B3) but has only finitely many points. (Then by
Exercise 7.4, line separation must fail in this model.) For example, in the ring
{0,1,2,3,4} of integers (mod 5), define a=bxcifb=1(a+c).

7.6 Prove directly from the axioms (I11)-(I13) and (B1)-(B4) that for any two distinct
points A, B, there exists a point C with A = C & B. (Hint: Use (B2) and (B4) to con-
struct a line that will be forced to meet the segment AB but does not contain A or B.)

7.7 Be careful not to assume without proof statements that may appear obvious. For
example, prove the following:

(a) Let A, B, C be three points on a line A . B

with € in between A and B. Then show . - -
that AC U CB = ABand AC N CB = {C}.

(b) Suppose we are given two distinct

points A, B on a line I. Show that AB U e /(_
; — S Ty

BA =land AB N BA = AB. 2
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7.8 Assume AxB+(C on one line, and B
A # D+ E on another line. Show that the
segment BE must meet the segment CD
at a point M.

r
L

7.9 Show that the interior of a triangle is nonempty.

7.10 Suppose that a line [ contains a point D
that is in the inside of a triangle ABC. 2
Then show that the line | must meet (at D
least) one of the sides of the triangle.

A C

7.11 A set U of points in the plane is a convex set if whenever A, B are distinct points in U,
then the segment AB is entirely contained in U. Show that the inside of a triangle is
a convex set.

7.12 A subset W of the plane is segment-connected it given any two points A, B € W, there
is a finite sequence of points A = A, Ay, ..., A, = B such that for each 1 =1,2,...,

n — 1, the segment A;A;4 is entirely contained within W,

If ABC is a triangle, show that the exterior of the triangle, that is, the set of all points of
the plane lying neither on the triangle nor in its interior, is a segment-connected set.

7.13 Let A, B,C, D be four points, no three collinear, and assume that the segments AB,
BC, CD, DA have no intersections except at their endpoints. Then the union of these
four segments is a simple closed quadrilateral. The segments AC and BD are the diag-
onals of the quadrilateral. There are two cases to consider.

Case 1 AC and BD meet at a point M. B

In this case, show that for each pair

of consecutive vertices (e.g., A, B), the

remaining two vertices (C,D) are on

the same side of the line AB. Define A

the interior of the quadrilateral to be

the set of points X such that for each '

side (e.g., AB), X is on the same side of

the line AB as the remaining vertices

(C,D). Show that the interior is a con-

vex set. B
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Case 2 AC and BD do not meet. In
this case, show that one of the diago-
nals (AC in the picture) has the prop-
erty that the other two vertices B, D are
on the same side of the line AC, while
the other diagonal BD has the property
that A and C are on the opposite sides
of the line BD. Define the mterior of the
quadrilateral to be the union of the
interiors of the triangles ABD and CDB
plus the interior of the segment BD.
Show in this case that the interior is
a segment-connected set, but is not
convex.

(For a generalization to n-sided fig-
ures, see Exercise 22.11.)

7.14 (Linear ordering) Given a finite set of distinct points on a line, it is possible to label
them Ap, Az, ..., Ay in such a way that A; # A; « Ay if and only if either i < j < k or
k<j<i

7.15 Suppose that lines a,b,c¢ through the
vertices A,B,C of a triangle meet at

three points inside the triangle. Label %)
them '
X=ua-c,
Y=a-b,
Z=b-c.

Show that one of the two following
arrangements must occur:

(i) A*X*Yand B+ Y+«Zand Cx Z % X A o C
(shown in diagram), or ¢

(il) A* Y*Xand B Zx Yand Cx X = Z,

8 Axioms of Congruence for Line Segments

To the earlier undefined notions of point, line, and betweenness, and to the
earlier axioms (11)-(13), (B1)-(B4), we now add an undefined notion of congru-
ence for line segments, and further axioms (C1)-(C3) regarding this notion. This
congruence is what Euclid called equality of segments. We postulate an un-
defined notion of congruence, which is a relation between two line segments AB
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and CD, written AB = CD. For simplicity we will drop the bars over AB in the
notation for a line segment, so long as no confusion can result. This undefined
notion is subject to the following three axioms

C1. Given a line segment AB, and given A
a ray r originating at a point C, there /

exists a unique point D on the ray r o
D

such that AB = CD. '\Q\)

C2.If AB = CD and AB = EF, then CD = EF. Every line segment is congruent to
itself.

C3. (Addition). Given three points A, B, C
C on a line satisfying A *B=*C, and B

three further points D,E,F on a line A D
satisfying D=Ex*F, if AB=DE and '\’E_\F
BC = EF, then AC = DF.

Let us observe how these axioms are similar to Euclid's postulates and how
they are different. First of all, while Euclid phrases some of his postulates in
terms of constructions (“to draw a line through any two given points,” and “to
draw a circle with any given center and radius”), Hilbert's axioms are existen-
tial. (11) says for any two distinct points there exists a unique line containing
them. And here, in axiom (C1), it is the existence of the point D (corresponding
to Euclid's construction (1.3)) that is taken as an axiom. Hilbert does not make
use of ruler and compass constructions. In their place he puts the axiom (C1) of
the existence of line segments and later (C4) the existence of angles. If you like,
you can think of (C1) and (C4) as being tools, a “transporter of segments” and a
“transporter of angles,” and consider some of Hilbert's theorems as construc-
tions with these tools.

The second congruence axiom (C2) corresponds to Euclid's common notion
that "“things equal to the same thing are equal to each other.” This is one part of
the modern notion of an equivalence relation, so to bhe comfortable in using
congruence, let us show that it is indeed an equivalence relation.

Proposition 8.1
Congruence is an equivalence relation on the set of line segments.

Proof To be an equivalence relation, congruence must satisty three properties.

(1) Reflexivity: Every segment is congruent to itself. This is explicitly stated in
(C2). And by the way, this corresponds to Euclid’s fourth common notion that
“things which coincide with each other are equal to each other.”
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(2) Symmetry: If AB = CD, then CD = AB. This is a consequence of (C2):
Given AB = CD, and writing AB = AB by reflexivity, we conclude from (C2) that
CD = AB.

(3) Transitivity: If AB = CD and CD = EF, then AB = EF. This follows by first
using symmetry to show CD = AB, and then applying (C2). Notice that Hilbert's
formulation of (C2) was a clever way of including symmetry and transitivity in a
single statement.

The third axiom (C3) is the counterpart of Euclid's second common notion,
that "equals added to equals are equal.”” Let us amplify this by making a precise
definition of the sum of two segments, and then showing that sums of congruent
segments are congruent.

Definition
Let AB and CD be two given segments.
Choose an ordering A,B of the end-
points of AB. Let v be the ray on the line
[ = AB consisting of B and all the points
of [ on the other side of B from A. Let E D
be the unique point on the ray r (whose —
existence is given by (C1)) such that
CD = BE.

We then define the segment AE to be the sum of the segments AB and CD,
depending on the order A, B, and we will write AE = AB + CD.

‘]‘P
LY G)
f

-ﬁ

W

Proposition 8.2 (Congruence of sums)
Suppose we are given segments AB = A'B' and CD = C'D'. Then AB+ CD =
A'B' 4+ C'D".

Proof Let E’ be the point on the line A’B’ defining the sum A'E' = A'B" + C'D’.
Then A = B+ E hy construction of the sum AB+ CD, hecause E is on the ray
from B opposite A. Similarly, A’+ B' = E’. We have AB = A’'B' by hypothesis.
Furthermore, we have CD = C'D’ by hypothesis, and CD =~ BE and C'D' =
B’E' by construction of E and E’. From (8.1) we know that congruence is an
equivalence relation, so BE = B'E’. Now by (C3) it follows that AE = A'E’ as
required.

Note: Since the segment AB is equal to the segment BA, it follows in particular
that the sum of two segments is independent of the order A, B chosen, up to
congruence. Thus addition is well-defined on congruence equivalence classes of
line segments. So we can speak of addition of line segments or congruent seg-
ments without any danger (cf. also Exercise 8.1, which shows that addition of
line segments is associative and commutative, up to congruence). Later (Section
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19) we will also define multiplication of segments and so create a field of seg-
ment arithmetic.

Euclid's third common notion is that “equals subtracted from equals are
equal.” Bearing in mind that subtraction does not always make sense, we can
interpret this common notion as follows.

Proposition 8.3
Given three points A, B,C on a line such

that A * B * C, and given points E,F on a A
ray originating from a point D, suppose

that AB = DE and AC = DF. Then E will D £

be between D and F, and BC = EF. (We »\‘\F\>
regarvd BC as the difference of AC and

AB)

Proof Let F' be the unique point on the ray originating at E, opposite to D, such
that BC = EF'. Then from AB = DE and BC = EF’ we conclude by (C3) that
AC = DF'. But F and F’ are on the same ray from D (check!) and also AC = DF,
so by (C2) and the uniqueness part of (C1), we conclude that F = F'. It follows
that D= E = F and BC =~ EF, as required.

Note the role played by the uniqueness part of (C1) in the above proof. We
can regard this uniqueness as corresponding to Euclid's fifth common notion,
“the whole is greater than the part.” Indeed, this statement could be interpreted
as meaning, it A * B * C, then AB cannot be congruent to AC. And indeed, this
follows from (C1), because B and C are on the same ray from A, and if AB =~ AC,
then B and C would have to be equal by (C1).

So we see that Euclid's common notions, at least in the case of congruence of
line segments, can be deduced as consequences of the new axioms (C1)-(C3).
Another notion used by Euclid without definition is the notion of inequality of
line segments. Let us see how we can define the notions of greater and lesser
also using our axioms.

Definition B
Let AB and CD be given line segments. {_\(,/
We will say that AB is less than CD,

written AB < CD, if there exists a point

E in between C and D such that AB = TTTT—— .
CE. In this case we say also that CD is

greater than AB, written CD > AB.
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In the next proposition, we will see that this notion of less than is compatible
with congruence, and gives an order relation on congruence equivalence classes
of line segments.

Proposition 8.4
a) Given line segments AB =~ A'B' and CD = C'D’, then AB < CD if and only 1
811 ; Y
A'B' < C'D'".
e relation < gives an order relation on line segments up to congruence, in
b) The relati j der relati li i
the following sense:

(i) If AB < CD, and CD < EF, then AB < EF.
(ii) Given two line segments AB, CD, one and only one of the three following condi-
tions holds: AB < CD, AB= CD, AB > CD.

Proof (a) Given AB= A'B' and CD =

C'D’, suppose that AB < CD. Then A B

there is a point E such that AB = CE /

and C+*E=D. Let E' be the unique C £ )
point on the ray C'D' such that CE = T

!
C’E'. 1t follows from (8.3) that C' % E' % A

e /
D'. Furthermore, by transitivity of con- \P
gruence, A'B' = C'E’, so A'B' < C'D’ as /D!
£

required. The “if and only if"” statement

follows by applying the same argument ¢’
starting with A’'B’ < C'D’.

(b) (i) Suppose we are given AB <
CD and CD < EF. Then by definition, A B

there is a point X € CD such that AB =
CX, and there is a point Y € EF such
that CD = EY. Let Ze EF be such that C X D
CX = EZ. Then by (8.3) we have E x Zx ”
Y. It follows that E # Z = I (Exercise 7.1)
and that AB = EZ. Hence AB < EF as * *
required.
(ii) Given line segments AB and CD,

M
T
-~
T

let E be the unique point on the ray CcD B

for which AB = CE. Then either D= E ’3‘____,___-——'—"

or CxE=+=D or C*xD=+E. We cannot

have D C = E because D and E are on c

the same side of C. These conditions are '-———~—-______?
equivalent to AB = CD, or AB < CD, or

AB > CD, respectively, and one and

only one of them must hold.
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Example 8.4.1
Let us define congruence for line seg- B =(k, IVJ.)
ments in the real Cartesian plane R, so ’
that it becomes a model for the axioms
(I11)-(13), (B1)-(B4), and (C1)-(C3) that
we have introduced so far. We have
already seen how to define lines and
betweenness (7.3.1). Given two points A :(a”cfn.)
A = (a1,a;) and B = (b, by), we define
the distance d(A,B) by

d(A,B) = \/(@1 — b1)* + (a2 — by)"

This is sometimes called the Euclidean distance or the Euclidean metric on R*.
Note that d(A,B) = 0, and d(A,B) = 0 only if A = B.

Now we can give an interpretation of the undefined notion of congruence in
this model by defining AB = CD if d(A, B) = d(C, D). Let us verify that the axioms
(C1), (C2), (C3) are satisfied.

For (Cl), we suppose that we are
given a segment AB, and let d = d(A, B).
We also suppose that we are given a
point C = (¢1,c3) and a ray emanat- D
ing from C. For simplicity we will
assume that the ray has slope m >0 A
and that it is going in the direction of b
increasing x-coordinate (we leave the A
other cases to the reader). Then any C =(c,6)
point D on this ray has coordinates D = "
(c1 +h,cy +mh) for some h=0. The
corresponding distance is

d(C,D) = hV1 + m?2.

To find a point D with AB = CD is then equivalent to solving the equation
(in a variable h > 0)

hvl+ m? =d,

where m and d > 0 are given. Clearly, there is a unique solution he R, h > 0,
for given d, m. This proves (C1).

The second axiom (C2) is trivial from the definition of congruence using a
distance function.
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To prove (C3), it will be sufficient to

prove that the distance function is addi- c
tive for points in a line: If A*Bx*C, B
then

d(A,B) +d(B,C) =d(A.C). A

Suppose the line is y=mx+ b, and
A = (ay,az) is the point with smallest
x-coordinate.

Then there are h,k > 0 such that

B = (a) + h,az + mh),
C= (a1 +h+ka+mh+k)).

In this case

d(A,B) = hv1 +m?,
d(B,C) = kv'1 + m?,
d(A,C) = (h+ k)v1 + m2,

so the additivity of the distance function follows.

We will sometimes call this model, the real Cartesian plane with congruence
of segments defined by the Euclidean distance function, the standard model of
our axiom system.

Exercises

The following exercises (unless otherwise specified) take place in a geometry with
axioms (11)-(13), (B1)-(B4), (C1)-(C3).

8.1 (a) Show that addition of line segments is associative: Given segments AB,CD, EF,
and taking A, B in order, then (AB+ CD) + EF = AB+ (CD + EF). (This means that
we obtain the same segment as the sum, not just congruent segments.)

(b) Show that addition of line segments is commutative up to congruence: Given
segments AB,CD, then AB+ CD = CD + AB.

8.2 Show that “halves of equals are equal” in the following sense: if AB = CD, and if E is
a midpoint ot AB in the sense that A « E = B and AE = EB, and if F is a midpoint of
CD, then AE = CF. (Note that we have not yet said anything about the existence of a
midpoint: That will come later (Section 10).) Conclude that a midpoint of AB, if it
exists, is unique.

8.3 Show that addition preserves inequalities: If AB < CD and it EF is any other seg-
ment, then AB + EF < CD + EF.
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8.4

8.5

8.6

8.7

3.8

3.9

Let » be a ray originating at a point A,
and let s be a ray originating at a point

B. Show that there is a 1-to-1 mapping L/’)
@ : ¥ — s of the set r onto the set s that

preserves congruence and between-

ness. In other words, if for any X € r we %

let X' =gp(X)es, then for any X,Y, s
Zer, XY=X'Y' and XzY=zZ<&

X' * Y xZ'

Given two distinct points O, A, we define the circle with center O and radius OA to be
the set I' of all points B such that OA = OB.

(a) Show that any line through O meets the circle in exactly two points.
(b) Show that a circle contains infinitely many points.

(Warning: It is not obvious from this definition whether the center O is uniquely de-
termined by the set of points I" that form the circle. We will prove that later ( Propo-
sition 11.1).)

Consider the rational Cartesian plane ©)* whose points are ordered pairs of rational
numbers, where lines are defined by linear equations with rational coefficients and
betweenness and congruence are defined as in the standard model ( Examples 7.3.1
and 8.4.1). Verify that (11)-(I3) and (B1)-(B4) are satisfied in this model. Then show
that (C2) and (C3) hold in this model, but (C1) fails.

Consider the real Cartesian plane R?, with lines and betweenness as before (Exam-
ple 7.3.1), but define a ditferent notion of congruence of line segments using the
distance function given by the sum of the absolute values:

d(A,B) = |ar — br| + |az — by,

where A = {(a1,a2) and B = (b, b2). Some people call this “taxicab geometry” be-
cause it is similar to the distance by taxi from one point to anther in a city where all
streets run east-west or north-south. Show that the axioms (C1), (C2), (C3) hold, so
that this is another model of the axioms introduced so far. What does the circle with
center (0,0) and radius 1 look like in this model?

Again consider the real Cartesian plane R?, and define a third notion of congruence
for line segments using the sup of absolute values for the distance function:

d(A, B) = sup{|a, — by, |az — b,|}.
Show that (C1), (C2), (C3) are also satisfied in this model. What does the circle with

center (0,0) and radius 1 look like in this case?

Following our general principles, we say that two models M, M’ of our geometry are
isomorphic if there exists a 1-to-1 mapping ¢ : M — M’ of the set of points of M onto
the set of points of M’, written p(A) = A’, that sends lines into lines, preserves
betweenness, e, A=B+Cin M < A"+ B' '+ C' in M’, and preserves congruence of
line segments, i.e., AB=CDin M < A'B' = C'D’' in M.

Show that the models of Exercise 8.7 and Exercise 8.8 above are isomorphic to each
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other, but they are not isomorphic to the standard model (Example 8.4.1). Note: To
show that the two models of Exercise 8.7 and Exercise 8.8 are isomorphic, you do
not need to make the distance functions correspond. It is only the notion of congru-
ence of line segments that must be preserved. To show that two models are not iso-
morphic, one method is to find some statement that is true in one model but not
true in the other model.

8.10 Nothing in our axioms relates the size of a segment on one line to the size of a con-
gruent segment on another line. So we can make a weird model as follows. Take the
real Cartesian plane IR* with the usual notions of lines and betweenness. Using the
Euclidean distance function d(A, B), define a new distance function

d(A,B)  if the segment AB is either horizontal or vertical,

d'(A,B) =
(4.5) {Zd(A,B} otherwise.

Define congruence of segments AB = CD if d'(A,B) =d'(C, D).
Show that (C1), (C2), (C3) are all satisfied in this model. What does a circle with
center (0,0) and radius 1 look like?

8.11 The triangle inequality is the statement that if A, B, C are three distinct points, then
AC < AB+ BC.

(a) The triangle inequality always holds for collinear points.

(b) The triangle inequality holds for any three points in the standard model { Exam-
ple 8.4.1) and also in taxicab geometry ( Exercise 8.7).

(c) The triangle inequality does not hold in the model of Exercise 8.10. Thus the tri-
angle inequality is not a consequence of the axioms of incidence, betweenness, and
congruence of line segments (C1)-(C3). (However, we will see in Section 10 that the
triangle inequality, in the form of Euclid (1.20), is a consequence of the full set of
axioms of a Hilbert plane.)

9 Axioms of congruence for Angles

Recall that we have defined an angle to be the union of two rays originating
at the same point, and not lying on the same line. We postulate an undefined
notion of congruence for angles, written =, that is subject to the following three
axioms:

C4. leen an angle / BAC and gwen a Y,
ray DF there exists a unique ray DE /
on a given side of the line DF, such that A s :D/\/ F

/, BAC = / EDF. “+3

C5. For any three angles o, 5,7, if w = ff and o =y, then f = y. Every angle is
congruent to itself.
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B
C6. (SAS) Given triangles ABC and DEF,
suppose that AB=DE and AC =DF, A I c
and / BAC = / EDF. Then the two tri- ¢ .
angles are congruent, namely, BC = EF,
/[ ABC =/ DEF and / ACB = / DFE. D F

Note that Hilbert takes the existence of an angle congruent to a given one
(C4) as an axiom, while Euclid proves this by a ruler and compass construc-
tion (1.23). Since Hilbert does not make use of the compass, we may regard
this axiom as a tool, the "“transporter of angles,” that acts as a substitute for the
compass.

As with (C2), we can use (C5) to show that congruence is an equivalence
relation.

Proposition 9.1
Congruence of angles is an equivalence relation.

Proof The proof is identical to the proof of (8.1), using (C5) in place of (C2).

As in the case of congruence of line segments, we would like to make sense
of Euclid’s common notions in the context of congruence of angles. This propo-
sition (9.1) is the analogue of the first common notion, that “things equal to the
same thing are equal to each other.” The second common notion, that “equals
added to equals are equal,” becomes problematic in the case of angles, because
in general we cannot define the sum of two angles.

?

_Flf /. BAC is an angle, and if a ray P
AD lies in the interior of the angle

/. BAC, then we will say that the angle

/. BAC is the sum of the angles /. DAC

and /. BAD.

A C

However, if we start with the two given angles, there may not be an angle
that is their sum in this sense. For one thing, they may add up to a straight line,
or “two right angles" as Euclid says, but this is not an angle. Or their sum may
be greater than 180°, in which case we get an angle, but the two original angles
will not be in the interior of the new angle. So we must be careful how we state
results having to do with sums of angles.

Note that we do not have an axiom about congruence of sums of angles
analogous to the axiom (C3) about addition of line segments. That is because we
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can prove the corresponding result for angles. But in order to do so, we will
need (CB).

Hilbert's use of (C6) = (SAS) as an axiom is a recognition of the insufficiency
of Euclid's proof of that result (I.4) using the method of superposition. To justify
the method of superposition by introducing axioms allowing motion of figures in
the plane would be foreign to Euclid's approach to geometry, so it seems pru-
dent to take (C6) as an axiom. However, we will show later (17.5) that the (SAS)
axiom is essentially equivalent to the existence of a sufficiently large group of
rigid motions of the plane. The axiom (C6) is necessary, since it is independent
of the other axioms (Exercise 9.3). This axiom is essentially what tells us that our
plane is homogeneous: Geometry is the same at different places in the plane.

Now let us show how to deal with sums of angles and inequalities among
angles hbased on these axioms.

Definition

It / BAC is an angle, and if D is a point B

on the line AC on the other side of A

from C, then the angles / BAC and ») A c
£, BAD are supplementary. - # -

Proposition 9.2
If /. BAC and [ BAD are supplementary angles, and if £ B'A'C’ and ( B'A'D'" are
supplementary angles, and if /. BAC = ¢ B’A'C', then also / BAD = / B'A'D’.

Proof Replacing B',C'.D’ by other
points on the same rays, we may as-
sume that AB= A'B', AC = A'C’, and
AD = A'D'. Draw the lines BC, BD,
B'C', and B'D". B
First we consider the triangles ABC
and A'B'C’. By hypothesis we have
AB= A'B" and AC = A'C' and / BAC =
/. B'A’C'. So by (C6) we conclude that
the triangles are congruent. In particu-
lar, BC = B'C' and /. BCA = /£ B'C'A".
Next we consider the triangles BCD
and B'C'D’. Since AC = A'C' and AD =
A'D' and C+A=Dand C'+ A"+ D', we
conclude from (C3) that CD =C'D"
Using BC = B'C’' and / BCA =/ B'C’'A’
proved above, we can apply (C6) again
to see that the triangles BCD and B'C’'D’
are congruent. In particular, BD = B'D’
and /. BDA =/ B'D'A".
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Now we consider the triangles BDA and B’D'A’. From the previous step we
have BD = B'D' and / BDA =~ / B'D'A’. But by hypothesis we have DA =~ D'A".
So a third application of (C6) shows that the triangles BDA and B'D’A’ are con-
gruent. In particular, /. BAD = / B'A’D', which was to be proved.

Note: We may think of this result as a replacement for (1.13), which says that
the angles made by a ray standing on a line are either right angles or are equal
to two right angles. We cannot use Euclid's statement directly, because in our
terminology, the sum of two right angles is not an angle. However, in applica-
tions, Euclid's (1.13) can be replaced by (9.2). So for example, we have the fol-
lowing corollary.

Corollary 9.3
Vertical angles are congruent.

Proof Recall that vertical angles are de-
fined by the opposite rays on the same
two lines. The vertical angles o and o'
are each supplementary to f, and ff is
congruent to itself, so by the proposi-
tion, o and o' are congruent.

Proposition 9.4 (Addition of angles)
Suppose / BAC is an angle, and the ray AD is in the interior of the .-:mgk, LBAC

Suppose [ D'A'C' =/ DAC, and [ B'A'D" = / BAD, and the rays A'B' and A'C'
are on opposite sides of the line A'D’. Then the rays A A'B' and A'C’ form an angle,
and / B'A'C' = / BAC, and the ray A'D' is in the interior of the angle / B'A'C’. For
short, we say “sums of congruent angles are congruent.”

Proof Draw the line BC. Then the ray
AD must meet the segment BC, by the
crosshar theorem (7.3). Replacing the
original D by this intersection point, we
may assume that B,D,C lie on a line
and B* D+ C. On the other hand, re- A
placing B',C’, D' by other points on the
same rays, we may assume that AB =
A'B'. and ACx> A'C', and AD= A'D'.
We also have [ BAD =/ B'A'D’' and
[ DAC =/ D'A'C’ by hypothesis.

By (C6) we conclude that the tri-
angles ABAD and AB’A'D' are con-
gruent. In particular, BD = B'D’ and
[ BDA = B'D'A’.

B
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Again by (C6) we conclude that the triangles ADAC and AD’A'C’ are congru-
ent. In particular, DC = D'C' and /. ADC = / A'D'C’.

Let E' be a point on the line B'D' with B' * D' * E’. Then /. A’D’E’ is supple-
mentary to /. A'D'B’, which is congruent to /. ADB. So by (9.2) and transitivity of
congruence, we find that / A'D'E' =/ A'D'C’. Since these angles are on the
same side of the line A'D’, we conclude from the uniqueness part of (C4) that
they are the same angle. In other words, the three points B',D’, and C' lie on a
line.

Then from (C3) we conclude that BC = B'C’. Since / ABD = / A'B'D' by the
first congruence of triangles used in the earlier part of the proof, we can apply
(C6) once more to the triangles ABC and A'B'C’'. The congruence of these tri-
angles implies / BAC = / B'A'C’ as required. Since B’,D', and €' are collinear
and D'A'C' is an angle, it follows that A’, B/, C’ are not collinear, so B'A'C' is an
angle. Since B’ and C’ are on opposite sides of the line A’D’, it follows that
B'+D'%C’, and so the ray A'D' is in the interior of the angle / B'A'C’, as
required.

Next, we will define a notion of inequality for angles analogous to the
inequality for line segments in Section 8.

Definition

Suppose we are given angles /. BAC and

/. EDF. We say that / BAC is less than ®

/ EDF, written / BAC < / EDF, if there

exists a ray DG in the interior of the

angle / EDF such that / BAC = / GDF. A c
In this case we will also say that / EDF *
is greater than / BAC.

Proposition 9.5
(a) Ifo=a’ and B =p' thena < f < o' < f'.
(b) Inequality gives an order velation on angles, up to congruence. In other words:
(i) If e < fand f <y, then o < .
(i) For any two angles o and f, one and only one of the following holds: o < f3;
ax=fa>f.

Proof The proofs of these statements are essentially the same as the correspond-
ing statements for line segments (8.4), so we will leave them to the reader.

Definition
A right angle is an angle « that is con-
gruent to one of its supplementary ﬁ o

angles fi.
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Note: In this definition, it does not matter which supplementary angle to o we
consider, because the two supplementary angles to « are vertical angles, hence
congruent by (9.3). Two lines are orthogonal if they meet at a point and one,
hence all four, of the angles they make is a right angle.

Proposition 9.6
Any two right angles are congruent to each other.

Proof Suppose that o =/ CAB and «' =
/. C'A'B" are right angles. Then they will C
be congruent to their supplementary
angles f3,5', by definition. Suppose o
and o’ are not congruent. Then by (9.5)

either o <o’ or o' <o Suppose, for 61
example, x < «’. Then by definition of j
—-
inequality there is a ray A'E’ in the in- D A g

terior of angle o' such that o« =~ / E'A'B’.
It follows (check!) that the ray A'C c ,

is in the interior of / E’A'D' so that €

f' < L E'A'D'". But £ E'A'D' is supple-

mentary to . E'A’B’, which is congruent

to o, so by (9.2), ZE'A'D" = . There- F" i

fore, ' < . But a = f and o' = f’, so ;

we conclude that o < o, which is a D'r A’ cM

contradiction.

Note: Thus the congruence of all right angles can be proved and does not need
to be taken as an axiom as Euclid did (Postulate 4). The idea of this proof already
appears in Proclus.

Example 9.6.1
We will show later that the real Cartesian plane IR? provides a model of all the
axioms listed so far. You are probably willing to believe this, but the precise
definition of what we mean by congruence of angles in this model, and the proof
that axioms (C4)-(C6) hold, requires some work. We will postpone this work
until we make a systematic study of Cartesian planes over arbitrary fields, and
then we will show more generally that the Cartesian plane over any ordered
field satistying a certain algebraic condition gives a model of Hilbert's axioms
(17.3).

The other most important model of Hilbert's axioms is the non-Euclidean
Poincare model, which we will discuss in Section 39.
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Exercises

9.1

9.2

9.3

9.4

(Difference of angles). Suppose we
are given congruent angles / BAC =
£ B'A'C’. Suppose also that we are given
aray AD in the interior of £ BAC. Then
there exists a ray A'D’ in the interior of
[ B'A'C" such that /DAC =/ D'A'C’
and / BAD =/ B'A'D'. This statement
corresponds to Euclid’s Common Notion
3: "Equals subtracted from equals are
equal,” where “equal”’ in this case
means congruence of angles.

Suppose the ray AD is in the interior of
the angle / BAC, and the ray AE is in
the interior of the angle / DAC. Show
that AE is also in the interior of / BAC.

A

C

Consider the real Cartesian plane where congruence of line segments is given by the
absolute value distance function (Exercise 8.7). Using the usual congruence of angles
that you know from analytic geometry (Section 16), show that (C4) and (C5) hold in
this model, but that (C6) fails. (Give a counterexample.)

Provide the missing betweenness argu-
ments to complete Euclid's proof of (1.7)
in the case he considers. Namely, as-
suming that the ray AD is in the inte-
rior of the angle / CAB, and assuming
that D is outside the triangle ABC, prove
that CB is in the interior of the angle
£ ACD and DA is in the interior of the
angle / CDB.

10 Hilbert Planes

C

We have now introduced the minimum basic notions and axioms on which to
found our study of geometry.
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Definition

A Hilbert plane is a given set {of points) together with certain subsets called lines,
and undefined notions of betweenness, congruence for line segments, and con-
gruence for angles (as explained in the preceding sections) that satisfy the axioms
(11)-(13), (B1)-(B4), and (C1)-(C6). (We do not include the parallel axiom (P).)

We could go on immediately and introduce the parallel axiom and axioms of
intersection of lines and circles, so as to recover all of Euclid's Elements, but it
seems worthwhile to pause at this point and see how much of the geometry we
can develop with this minimal set of axioms. The main reason for doing this is
that the axioms of a Hilbert plane form the basis for non-Euclidean as well as
Euclidean geometry. In fact, some people call the Hilbert plane neutral geometry,
because it neither afirms nor denies the parallel axiom.

In this section we will see how much of Euclid’s Book I we can recover in a
Hilbert plane. With two notable exceptions, we can recover everything that does
not make use of the parallel postulate.

Let us work in a given Hilbert plane. Euclid’'s definitions, postulates, and
common notions have been replaced by the undefined notions, definitions, and
axioms that we have discussed so far (excluding Playfair's axiom). We will now
discuss the propositions of Euclid, Book L.

The first proposition (1.1) is our first exception! Without some additional
axiom, it is not clear that the two circles in Euclid's construction will actually
meet. In fact, the existence of an equilateral triangle on a given segment does
not follow from the axioms of a Hilbert plane (Exercise 39.31). We will partially
fill this gap by showing (10.2) that there do exist isosceles triangles on a given
segment.

Euclid's Propositions (1.2) and (1.3) about transporting line segments are
effectively replaced by axiom (C1). Proposition {1.4), (SAS), has been replaced by
axiom (C6).

Proposition (L.5) and its proof are ok as they stand. In other words, every
step of Euclid’s proof can be justified in a straightforward manner within the
framework of a Hilbert plane. To illustrate this process of reinterpreting one of
Euclid's proofs within our new axiom system, let us look at Euclid's proof step
by step.

Proof of (1.5) Let ABC be the given isosceles triangle, with AB = AC (congruent
line segments). We must prove that the base angles / ABC and / ACB are con-
gruent. “In BD take any point F."” This is possible by axiom (B2). “On AE cut off
AG equal to AF." This is possible by (C1). Now AC = AB and AF = AG, and the
enclosed angle /. BAC is the same, so the triangles AAFC and AAGB are congru-
ent by a direct application of (C6). So FC =GB and /[ AFC =/ AGB and
L ACF = / ABG.

Since “eqguals subtracted from equals are equal,” referring in this case to
congruence of line segments, we conclude from (8.3) that BF = CG. Then by
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another application of (C6), the triangles AFBC and AGCB are congruent. It fol-
lows that / CBG = / BCF. Now by subtraction of congruent angles (Exercise 9.1),
the base angles 1 ABC and /. ACB are congruent, as required. (We omit the proof
of the second assertion, which follows similarly.)

A

E
D

At certain steps in this proof we need to know something about between-
ness, which can also be formally proved from our axioms. For example, in order
to subtract the line segment AB from AF, we need to know that B is between A
and F. This follows from our choice of F. At the last step, subtracting angles, we
need to know that the ray BC is in the interior of the angle /. ABG. This follows
from the fact that C is between A and G.

So in the following, when we say that Euclid's proof is ok as is, we mean that
each step can be justified in a natural way, without having to invent additional
steps of proof, from Hilbert's axioms and the preliminary results we established
in the previous sections.

Looking at (1.6), the converse of (L5), everything is ok except for one doubt-
ful step at the end. Euclid says, “the triangle DBC is equal to the triangle ACB,
the less to the greater; which is absurd.” It is not clear what this means, since we
have not defined a notion of inequality for triangles. However, a very slight
change will give a satisfactory proof. Namely, from the congruence of the tri-
angles ADBC = AACE, it follows that / DCB = / ABC. But also / ABC = / ACB
by hypothesis. So /. DCB = / ACB, “the less to the greater,” as Euclid would say.
For us, this is a contradiction of the uniqueness part of axiom (C4), since there
can be only one angle on the same side of the ray CB congruent to the angle
/. ACB. We conclude that the rays CA and CD are equal, so A = D, and the tri-
angle is isosceles, as required.
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Proposition (1.7), as we have mentioned before, needs some additional justi-
fication regarding the relative positions of the lines, which can be supplied from
our axioms of betweenness (Exercise 9.4).

For (1.8), (SSS), we will need a new proof, since Euclid's method of super-

position cannot be justified from our axioms. The following proof is due to
Hilbert.

Proposition 10.1 (S5S)
If two triangles ABC and A'B'C' have their respective sides equal, namely AB = A'B’,
AC = A'C', and BC = B'C’, then the two triangles are congruent.

Proof Using (C4) and (C1), construct an
angle / C'A'B" on the other side of the

ray A'C’ from B’ that is congruent

to /. BAC, and make A’B" congruent to

AB. Then AB= A’B" by construction,

AC = A'C' by hypothesis, and / BAC = A
/[ B"A'C’' by construction, so by (C6),
the triangle AABC is congruent to the
triangle AA’BC'. 1t follows that BC =
B"C'".

Draw the line B'B”". Now A'B’ = B’
AB = A'B", so by transitivity, A'B’ =
A'B”. Thus the triangle A’B’'B" is isos-
celes, and so by (1.5) its base angles
L A'B'B" and / A'B"B' are congruent.
Similarly, B'C’' = B"C’, so the triangle {

C’B'B" is isosceles, and its base angles
/. B"B'C' and ¢/ B'B"C' are congruent.
By addition of congruent angles (9.4) it i
follows that /. A'B'C' = / A'B"C'. ©

This latter triangle was shown congruent to AABC, so / A'B"C’' = / ABC.
Now by transitivity of congruence, / ABC = / A'B'C', so we can apply (C6)
again to conclude that the two triangles are congruent.

o

Note: This proof and the accompanying figure are for the case where A’ and C'
are on opposite sides of the line B'B”. The case where they are on the same side
is analogous, and the case where one of A’ or C' lies on the line B'B” is easier,
and lett to the reader.

Starting with the next proposition (1.9) we have a series of constructions with
ruler and compass. We cannot carry out these constructions in a Hilbert plane,
because we have not yet added axioms to ensure that lines and circles will meet
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when they ought to (cf. Section 11). However, we can reinterpret these proposi-
tions as existence theorems, and these we can prove from Hilbert's axioms.
Since we do not have the equilateral triangles that Euclid constructed in (1.1), we
will prove the existence of isosceles triangles, and we will use them as a substi-
tute for equilateral triangles in the following existence proofs.

Proposition 10.2 (Existence of isosceles triangles)
Given a line segment AB, there exists an isosceles triangle with base AB.

Proof Let AB be the given line seg-

ment. Let C be any point not on the line

AB (axiom (I3)). Consider the triangle

AABC. If the angles at A and B are

equal, then AABC is isosceles (1.6). If

not, then one angle is less than the 0
other. Suppose / CAB < / CBA. Then

there is a ray BE in the interior of the

angle /. CBA such that /. CAB =~ EBA.

By the crossbar theorem (7.3) this A B
ray must meet the opposite side ACina
point D. Now the base angles of the tri-
angle DAB are equal, so by (1.6) it is
isosceles.

Note: It would not suffice to construct

equal angles at the two ends of the inter-

val, because without the parallel axiom,

even if the angles are small, there is no A B
guarantee that the two rays would meet. {

Now let us return to Euclid. We interpret (1.9) as asserting the existence of an
angle bisector. We use the same method as Euclid, except that we use (10.2) to
give the existence of an isosceles triangle ADEF where Euclid used an equilat-
eral triangle. We may assume that this isosceles triangle is constructed on the
opposite side of DE from A. Then Euclid’s proof, using (SSS), sh(ﬂf; that
/ DAF = / EAF. 1t is not obvious from the construction that the ray AF is in
t}iinterior of the angle /. DAE, but it does follow_t:rom tlﬁ’(:on(:lusion: For if
AF were not in the interior of the angle, then AD and AE would be on the
same side of AF, and in that case the congruence of the angles /. DAF = / EAF
would contradict the uniqueness in axiom (C4).

For (1.10) to bisect a given line segment, we again use (10.2) to construct an
isosceles triangle instead of an equilateral triangle. The rest of Euclid's proof
then works to show that a midpoint of the segment exists.

For (1.11) we can also use (10.2) to construct a line perpendicular to a line at
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a point. By the way, this also proves the existence of right angles, which is not
obvious a priori.

For (1.12), to drop a perpendicular from a point C to a line not containing C,
Euclid's method using the compass does not work in a Hilbert plane. We need a
new existence proof (see Exercise 10.4).

Proposition (1.13) has been replaced by the result on congruence of supple-
mentary angles (9.2), and (1.14) is an easy consequence (Exercise 10.7). The
congruence of vertical angles (1.15) has already been mentioned above (9.3).
The theorem on exterior angles (1.16) is sufficiently important that we will re-
produce Euclid's proof here, with the extra justifications necessary to make it
work.

Proposition 10.3 (Exterior angle theorem (1.16))
In any triangle, the exterior angle is greater than either of the opposite interior angles.

Proof Let ABC be the given triangle.

We will show that the exterior angle

[ ACD is greater than the opposite inte- A €
rior angle at A. Let E be the midpoint of

AC (1.10), and extend BE to F so that £

BE = EF (axiom (C1)). Draw the line
CF. Now the vertical angles at E are
equal (I.15), so by SAS (C6), the tri-
angles AABE and ACFE are congruent. 'l
Hence / A = / ECF. c ?

To finish the pr% that is, to show that /. ECF is less than /. ACD, we need to
know that the ray CF is in the interior of the angle / ACD. This we can prove
based on our axioms of betweenness. Since D is on the side BC of the triangle
extended, B and D are on opposite sides of the line AC. Also, by construction of
F, we have B and F on opposite sides of AC. So from the plane separation prop-
erty (7.1) it follows that D and F are on the same side of the line AC.

Now consider sides of the line BC. Since B # E # F, it tollows that E and F are
on the same side of BC. Since A * E = C, it follows that A and E are on the same
side of AC. By transitivity (7.1) it follows that A and F are on the same side of the
line BC = CD. So by definition, F is in the interior of the angle /. ACD, and hence
the ray CF is also. Therefore, by definition of inequality for angles, /. BAC is
less than /. ACD, as required.

Propositions (1.17)-(1.21) are all ok as is, except that we should reinterpret
the statement of (1.17). Instead of saying “any two angles of a triangle are less
than two right angles,” which does not make sense in our system, since “two
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right angles" is not an angle, we simply say; if o and f are any two angles of a
triangle, then =« is less than the supplementary angle of 5.

Proposition (1.22) is our other exception. Without knowing that two circles
intersect when they ought to, we cannot prove the existence of the triangle re-
quired in this proposition. In fact, we will see later (Exercise 16.11) that there
are Hilbert planes in which a triangle with certain given sides satisfiring the
hypotheses of this proposition does not exist!

The next proposition (1.23), which Euclid proved using (1.22), is replaced by
Hilbert's axiom (C4), the “transporter of angles.”

The remaining results that Euclid proved without using the parallel postulate
are ok as is in the Hilbert plane: (1.24), (1.25), (1.26) = (ASA) and (AAS), (1.27)
“alternate interior angles equal implies parallel,” and even the existence of par-
allel lines (1.31).

Summing up, we have the following theorem.

Theorem 10.4
All of Euclid’s propositions (1.1) through (1.28), except (1.1) and (1.22), can be proved
in an arbitrary Hilbert plane, as explained above.

Constructions with Hilbert’s Tools

Euclid used ruler and compass constructions to prove the existence of various
objects in his geometry, such as the midpoint of a given line segment. We used
Hilbert's axioms to prove corresponding existence results in a Hilbert plane.
However, we can reinterpret these existence results as constructions if we
imagine tools corresponding to certain of Hilbert's axioms. Thus (11), the exis-
tence of a line through two points, corresponds to the ruler. For axiom (C1),
imagine a tool, such as a compass with two sharp points (also called a pair of di-
viders), that acts as a transporter of segments. For axiom (C4), imagine a new
tool, the transporter of angles, that can reproduce a given angle at a new point.
It could be made of two rulers joined with a stiff but mowvable hinge.

We call these three tools, the ruler, the dividers, and the transporter of
angles, Hilbert’s tools. We also allow ourselves to pick points (using (I3) and (B2))
as required.

Now we can regard (10.2) as a construction of an isosceles triangle using
Hilbert's tools. Counting steps, with one step for each use of a tool, we have the
construction as follows:

Given a line segment AB. Pick C not on the line AB.

1. Draw line AC.
2. Draw line BC. Suppose /. CAB is less than / CBA.
3. Transport /. CAB to / ABE, get point D.

Then ABD is the required isosceles triangle.




10. Hilbert Planes 103

Exercises

10.1 Construct with Hilbert's tools the angle bisector of a given angle (par = 4).

10.2 Construct with Hilbert's tools the midpoint of a given segment ( par = 4).

10.3 Construct with Hilbert's tools a line perpendicular to a given line [ at a given point

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

A el (par =5).

Construct with Hilbert's tools a line perpendicular to a given line [ from a point A

not on [ (par = 4).

Construct with Hilbert's tools a line parallel to a given line [, and passing through a

given point A not on [ (par = 2).

Write out a careful proof of Euclid (1.18), justifying every step in the context of
a Hilbert plane, and paying especial attention to questions of betweenness and

inequalities.

Rewrite the statement (1.14) so that it makes sense in a Hilbert plane, and then

give a careful proot.

Write a careful proof of (1.20) in a Hilbert plane.

Show that the right-angle-side-side
congruence theorem (RASS) holds in a
Hilbert plane: If ABC and A'B'C' are
triangles with right angles at B and B',
and if AB = A'B’ and AC = A'C’, then
the triangles are congruent.

In a Hilbert plane, suppose that we
are given a quadrilateral ABCD with
AB = CD and AC = BD. Prove that CE
is parallel to AB (without using the
parallel axiom (P)). Hint: Join the
midpoints of AB and CD; then use
(1.27).

Given a finite set of points Ay, ..., Ay
in a Hilbert plane, prove that there
exists a line [ for which all the points
are on the same side of I

A

|

x|

c B

i

4

A!

f ¢’
// |
2]
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11 Intersections of Lines and Circles

In this section we will discuss the intersections of lines and circles in the Hilbert
plane, and we will introduce the further axiom (E), which will guarantee that
lines and circles will intersect when they “ought” to. With this axiom we can
justify Euclid’s ruler and compass constructions in Book I and Book I1I. We work
in a Hilbert plane (Section 10) without assuming the parallel axiom (P). Because
of (10.4) we can use Euclid’s results (1.2)-(1.28) (except (1.22)) in our proofs.

Definition

Given distinct points O, A, the circle T

with center O and radius OA is the set

of all points B such that OA = OB. The

point O is the center of the circle. The

segment OA is a radius. A

From this definition it is clear that a
circle always has points. The point A is 8
on the circle. Moreover, if' [ is any line
through O, then by axiom (C1) there
will be exactly two points on the line [,
one on each side of O, lying on the cir-
cle. However, it is not obvious from the
definition that the center is uniquely
determined by the set of points of the
circle.

Proposition 11.1

Let T be a circle with center O and radius OA, and let I be a circle with center O'
and radius O'A'. Suppose I'=I'" as point sets. Then O = Q'. In other words the
center of a circle is uniquely determined.

Proof Suppose O s O'. Then we con- )
sider the line ! through O and O’. Since > P— "
it passes through the center O of I, it C o0 D

must meet [" in two points C, D, satisfy-
ing C* O+ D and OC = OD.

Since I'=1", the points C,D are also on I'Y, so we have O'C = O'D and
C+ 0"+ D. We do not know which of O or O’ is closer to C, but the two cases are
symmetric, so let us assume € = O = O'. In this case we must have O« O’ = D by
the properties of betweenness(!). Then OC < O'C = O’'D < OD, which is impos-
sible, since OC = OD. Hence O = O'.




11. Intersections of Lines and Circles 105

Now that we know that the center of a circle is uniquely determined, it
makes sense to define the inside and the outside of a circle.

Definition

Let I be a circle with center O and radius OA. A point B is inside I' (or in the
interior of T') if B= O or if OB < OA. A point C is outside I" (or exterior to I') if
0OA < 0OC.

Definition

We say that a line [ is tangent to a circle I'if [ and I" meet in just one point A. We
say that a circle T" is tangent to another circle A if I' and A have just one point in
common.

This definition of tangent circles is a little different from Euclid’s: His defini-
tion of two circles touching is that they meet in a point but do not cut each other.
Since it is not clear what he means by “cut,” we prefer the definition above, and
we will prove that these notions of tangency have the usual properties.

Proposition 11.2

Let T be a circle with center O and radius OA. The line perpendicular to the radius
OA at the point A is tangent to the circle, and (except for the point A) lies entirely
outside the circle. Conversely, if a line 1 is tangent to I at A, then it is perpendicular
to OA. In particular, for any point A of a circle, there exists a unique tangent line to
the circle at that point.

Proof First, let I be the line perpendic-
ular to OA at A. Let B be any other
point on the line I. Then in the triangle

OAB, the exterior angle at A is a right £
angle, so the angles at O and at B are
less than a right angle (1.16). It follows 1B

(L19) that OB > OA, so B is outside the
circle. Thus I meets I" only at the point
A, s0 it is a tangent line. 0

Now suppose that [ is a line tangent
to I' at A. We must show that I is per-
pendicular to OA. It cannot be equal T
to OA, because that line meets I" in an-
other point opposite A. So consider the
line from O, perpendicular to [, meeting
[ at B. If B+# A, take a point C on the
other side of B from A, so that AB = BC
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(axiom (C1)). The AOBA = AOBC by ]
SAS, so we have OA = OC, and hence C

is also on I'. Since C # A, this is a con- ¢
tradiction. We conclude that B = A, and

so lis perpendicular to OA. B

Corollary 11.3
If a line 1 contains a point A of a circle T,
exactly two points.

Proof 1f [ is not tangent to I' at A, then
it is not perpendicular to OA, in which
case, as we saw in the previous proof, it
meets ' in another point C. We must
show that [ cannot contain any further
points of I'. For it D were another point
of l on I, then OD = OA, OB is congru-
ent to itself, so by (RASS) (Exercise 10.9)
we would have AODB =~ AOAB. Then
AB = BD, so by axiom (C1) D must be
equal to A or C.

Proposition 11.4

Let O,0', A be three distinct collinear points. Then the circle T with center O and
radius OA is tangent to the circle I with center O’ and radius O'A. Conversely, if
two circles T, T are tangent at a point A, then their centers 0,0’ are collinear with
A.

Proof Let 0,0',A be collinear. We

must show that the circles I' and T

have no further points in common be-

sides A. The argument of (11.1) shows 0 o A
that there is no other point on the line
OO’ that lies on both I and I''. So sup-
pose there is a point B not on 00’ lying ™
on both I" and I'. We divide into two r

cases depending on the relative position

of 0.0', and A.
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Case 1 O+0'+=A. Since 0OA = OB, B
/. OAB =~ / OBA. Also, since O'A = O'B,
[ O'AB = / O'BA, using (L.5). It follows
that / OBA = / O'BA, which contradicts
axiom (C4). (This argument also applies

ifO" O« A)

Case 2 O = A= 0. Again using (L5) we
find that / OAB =/ OBA and /. O'AB = ®

/. O'BA. But the two angles at A are

supplementary, so it follows that the

two angles at B are supplementary (9.2). N

But then O, B, and O’ would be collinear o A of
(1.14), which is a contradiction. 0

Conversely, suppose that I' and I

are tangent at A, and suppose that A
0,0',A are not collinear. Then we let
AC be perpendicular to the line 00’,
and choose B on the line AC on the / c

C/Ii
other side of 00’ with AC = BC. It fol- ‘N

lows by congruent triangles that OA =
OB and O'A = O'B, so B also lies on I’
and I, contradicting the hypothesis I’
tangent to I'. We conclude that O,0’, A
are collinear.

Corollary 11.5
If two circles meet at a point A but are not tangent, then they have exactly two points
11N COMMOon.

Proof We have seen above that if they are not tangent, then O,0’, A are not
collinear, and they meet in an additional point B. We must show there are no
further intersection points. If D is a third point on I" and ', then OD = OA and
O'D = O’A, so by (L.7), D must be equal to A or B.

In the above discussion of lines and circles meeting, we have seen that a line
and a circle, or two circles, can be tangent (meeting in just one point), or if they
meet but are not tangent, they will meet in exactly two points. There is nothing
here to guarantee that a line and a circle, or two circles, will actually meet if
they are in a position such that they “ought” to meet according to the usual
intuition. For this we need an additional axiom (and we will see later (17.3) that
this axiom is independent of the axioms of a Hilbert plane).
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E. (Circle-circle intersection property).
Given two circles T', A, it A contains at
least one point inside I', and A contains
at least one point outside I', then I" and
A will meet. (Note: It follows from Exer-
cise 11.3 and (11.5) that they will then
meet in exactly two points.)

Proposition 11.6 (Line-circle intersection property LCI)
In a Hilbert plane with the extra axiom (E), if a line I contains a point A inside a
circle I, then [ will meet T (necessarily in two points, because of (11.2) and (11.3)).

Proof Suppose we are given the line L
with a point A inside the circle I'. Our
strategy is to construct another circle A,
show that A meets I and then show c
that the intersection point also lies on [
Let OB be the perpendicular from O to [

(if O is on the line I, we already know .
that I meets I" by (C1)). Find a point O’ X c\ [® of
on the other side of [ from O, on the line

OB, with O'B = OB. Let A be the circle 0
with center O’ and radius r = radius of

I. (Here we denote by r the congruence
equivalence class of any radius of the

circle I.)

Now the line OO’ meets A in two points C, D, labeled such that O, C are on
the same side of O', and D on the opposite side.

By hypothesis, A is a point on [, inside I'. Hence OA < r. In the right triangle
OAB, using (1.19) we see that OB < OA, so OB < r. It follows that O'B < r = O'C,
s0 O' and C are on opposite sides of . Hence O, C are on the same side of I. We
wish to show that C is inside I'. There are two cases.

Case 1 IO+ C =B, then OC < OB < r, so C is inside T'.

Case2 IfC+ 0= B, thenalso C* O*0’, s00C < O'C = r, and again we see that
C is inside I".

On the other hand, the point D satisfies O #+ O’ = D, so OD > O'D =7, so D is
outside T
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vives from it, and puts inftead of Euclid’s,

N O T E s

PROP. XXII. B. I

Some Authors blame Fuclid becaule he does not demonfirate that
the two circles made ufe of-in the conftruion of this Problem fhall
cut one another. but this is very plain from the determination he has

given, viz. that any two of the firaight lines DF, FG, GH muft be
greater than the third. for who is {o dull, tho’ only beginning to learn
the Elc_mcnts, as not to perceive that the circle defcribed from the centre
T, at the diftance FD, muft meet FH betwixt F and H, becaule FD
is lefler than FH; and that, for the like reafon, the circle deferibed
from the centre G, at the diftance GH or GIM muft meet DG betwixt
D and G; and that thele circles mnft meet one another, becaufe FD
and GH arc together greater than FG? and
this detcrmination is eafier to be underftood
than that which Mr. Thomas Simpfon de-

in the 49. page of his Elements of Geo- bM F G H

metry, that he may fupply the omiffion he blames Euclid for; which
determination is, that any of the three ftraight lines muft be leffer than
the fum, but greater than the difference of the other two. from this
he fhews the circles muft meet onc another, in one cafe; and fays that
it may be proved after the fame manner in any other cafe. but the
ftraight line GM which he bids rake from GF may be greater than
it, as In the figure here annexed, in which cafe his demonftratdon muft
be changed into another.

Plate V. Simson's commentary on (1.22) from his English translation of Euclid (1756).
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Now we can apply the axiom (E) to
conclude that I' meets A at a point E.
We must show that E lies on I. We know
that OE=~r=>=0O'E and OB=0'B by
construction, and BE is equal to itself,
so by (SSS) AOEB = AO’EB. It follows
that the angles at B are equal, so they
are right angles, so BE is equal to the 6 B o'
line I, and so E lies on [ and I', as
required.

Ty

Remark 11.6.1

We will see later (16.2) that in the Cartesian plane over a field, the circle-circle
intersection property is equivalent to the line-circle intersection property. In an
arbitrary Hilbert plane, the equivalence of these two statements follows from
the classification theorem of Pejas (cf. Section 43), but I do not know any direct
proof.

Using the new axiom (E) we can
now justify Euclid's first construction J— .
(L.1), the equilateral triangle. Given the
segment AB, let I' be the circle with
center A and radius AB. Let A be the
circle with center B and radius BA. D
Then A is on the circle A, and it is
inside I because it is the center of I
The line AB meets A in another point D,
such that A # B+ D. Hence AD > AB, so
D is outside I'. A

Thus A contains a point inside I and '

a point outside I', so it must meet ' in a
point C. From here, Euclid's proof shows
that AABC is an equilateral triangle.

In a similar way one can justify Euclid’s other ruler and compass construc-
tions in Book I. Several of them depend only on using the equilateral triangle
constructed in (I.1). For (L.12) and (1.22) see Exercise 11.4 and Exercise 11.5.
Thus we have the following theorem.

Theorem 11.7
Euchid's constructions (1.1) and (1.22) are valid in a Hilbert plane with the extra
axiom (E).

We can also justify the results of Euclid, Book II1, up through (I11.19) (note
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that (111.20) and beyond need the parallel axiom). The statements (I11.10),
(I11.11), (I11.12) about circles meeting and (I11.16), (I111.18), (I1I1.19) about tangent
lines can be replaced by the propositions of this section. (We omit the contro-
versial last phrase of (I11.16) about the angle of the semicircle, also called a
horned angle or angle of contingency, because in our treatment we consider
only angles defined by rays lying on straight lines.) In (111.14) Euclid uses (1.47)
to prove (RASS), but that is not necessary: One can prove it with only the axioms
of a Hilbert plane (Exercise 10.9). For (I11.17), to draw a tangent to a circle from
a point outside the circle, we need the line-circle intersection property (11.6)
and hence the axiom (E). (Note that the other popular construction of the tan-
gent line using (I11.31) requires the parallel axiom!) The other results of Book 111,
up to (I11.19) (except (I11.17)), are valid in any Hilbert plane, provided that we
assume the existence of the intersection points of lines and circles used in the
statement and proofs, and their proofs are ok as is, except as noted.

Theorem 11.8
Euclid’s propositions (111.1) through (111.19) are valid in any Hilbert plane, except
that for the constructions (111.1) and (111.17) we need also the additional axiom (E).

Exercises

11.1 (a) The interior of a circle I' is a convex set: Namely, if B, C are in the interior of T,
and if D is a point such that B * D * C, then D is also in the interior of T".

(b) Assuming the parallel axiom (P), show that if B, C are two points outside a circle
I', then there exists a third point D such that the segments BD and DC are entirely
outside I'. (This implies that the exterior of I' is a segment-connected set. See also
Exercise 12.6.)

11.2 Two circles I', I'” that meet at a point A are tangent if and only if the tangent line to
I' at A is equal to the tangent line to [V at A.

11.3 If two circles I and A are tangent to each other at a point A, show that (except for
the point A) A lies either entirely inside I' or entirely outside I'.

11.4 Use the line-circle intersection property (Proposition 11.6) to give a careful justifi-
cation of Euclid’'s construction (1.12) of a line from a point perpendicular to a given
line.

11.5 Given three line segments such that any two taken together are greater than the
third, use (E) to justify Euclid's construction (1.22) of a triangle with sides congruent
to the three given segments.

11.6 Show that Euclid's construction of the circle inscribed in a triangle (1V.4) is valid in
any Hilbert plane. Be sure to explain why two angle bisectors of a triangle must
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meet in a point. Conclude that all three angle bisectors of a triangle meet in the
same point.

11.7 Using (E), show that Euclid's construction of a hexagon inscribed in a circle (1V.15)
makes sense. Without using (P) or results depending on it, which sides can you show
are equal to each other?

12 Euclidean Planes

Let us look bhack at this point and see how well Hilbert's axioms have fulfilled
their goal of providing a new solid base for developing Euclid's geometry. The
major problems we found with Euclid's method have been settled: Questions of
relative position of figures have been clarified by the axioms of betweenness; the
problematic use of the method of superposition has been replaced by the device
of taking SAS as an axiom; the existence of points needed in ruler and compass
constructions is guaranteed by the circle—circle intersection property stated as
axiom (E). Also, in the process of rewriting the foundations of geometry we have
formulated a new notion, the Hilbert plane, which provides a minimum context
in which to develop the beginnings of a geometry, free from the parallel axiom.
Hilbert planes serve as a basis both for Euclidean geometry, and also later, for
the non-Euclidean geometries.

In this section we will complete the work of earlier sections by showing
how the addition of the parallel axiom allows us to recover almost all of the
first four books of Euclid's Elements. We will also mention two more axioms,
those of Archimedes and of Dedekind, which will be used in some parts of later
chapters.

Definition

A Euclidean plane is a Hilbert plane satisfying the additional axioms (E), the
circle-circle intersection property, and (P), Playfair's axiom, also called the par-
allel axiom. In other words, a Euclidean plane is a set of points with subsets
called lines, and undefined notions of betweenness and congruence satistying
the axioms (11)-(13), (B1)-(B4), (C1)-(C6), (E), and (P). The Euclidean plane rep-
resents our modern formulation of the axiomatic basis for developing the
geometry of Euclid’s Elements.

We have already seen in Section 10 and Section 11 how to recover those
results of Euclid's Books I and I1I that do not depend on the parallel axiom. The
first use of the parallel axiom is in (1.29). Since we have replaced Euclid's fifth
postulate by Playtair's axiom, we need to modify Euclid's proofs of a few early
results in the theory of parallels.
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So for example, to prove (1.29) we

proceed as follows. Given two parallel "
lines I, m, and a transversal line n, we \_’\4/ £
must show that the alternate interior f‘)' .
angles « and f are equal. If not, con- £
struct a line I’ through A making an
angle z with n (axiom (C4)). By (1.27), I

B /d "

will be parallel to m. But then I and '
are two lines through A parallel to m, so
by (P), we must have [ = I', hence o = /.

Proposition (1.30) is essentially equivalent to (P). The existence of parallel
lines (1.31) follows from (C4) and (1.27) as mentioned before, so now we can
reinterpret (1.31) in the stronger form that given a point A not on a line [,
there exists a unique parallel to [ passing through A. The remaining propositions
using (P), namely (1.32)-(1.34), follow without difficulty. In particular, we have
the famous (1.32), that “the sum of the angles of a triangle is equal to two right
angles,” though if we want to be scrupulous, we would have to say that sum is
not defined, and rephrase the theorem by saying that the sum of any two angles
of a triangle is supplementary to the third angle.

Theorem 12.1
Euclid's theory of parallels, that is, propositions (1.29)-(1.34), hold in any Hilbert
plane with (P), hence in any Euclidean plane.

Starting with (1.35), and continuing to the end of Book I and through Book II,
is Euclid's theory of area. Since Euclid does not define what he means by this
new equality, we must presume that he takes it as another undefined notion,
which we call equal content, just as the notion of congruence for line segments
and angles were taken as undefined notions. Since Euclid freely applies the
common notions to this concept, we may say that he has taken the common
notions applied to equal content as further axioms, for example, “figures having
equal content to a third figure have equal content to each other,” or ‘“halves of
figures of equal content have equal content.”

Hilbert showed that it is not necessary to regard the notion of equal content
as an undefined notion subject to further axioms. He shows instead that it is
possible to define the notion of equal content for figures (by cutting them up,
rearranging, and adding and subtracting), and then prove the properties sug-
gested by Euclid's common notions. To be more precise, we have the following
theorem.

Theorem 12.2 (Theory of area)
In a Hilbert plane with (P) there is an equivalence velation called equal content for
rectilineal figures that has the following properties:
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(1) Congruent figures have equal content.

(2) Sums of figures with equal content have equal content.

(3) Differences of figures with equal content have equal content.
(4) Halves of figures with equal content have equal content.

(5) The whole is greater than the part.

(6) If two squares have equal content, their sides are congruent.

We will prove this theorem in Chapter 5, (22.5), (23.1), (23.2). For the present
you can either accept this result as something to prove later, or (as Euclid im-
plicitly did) you can regard equal content of figures as another undefined notion,
subject to the axioms that it is an equivalence relation and has these properties
(1)-(6). For further discussion and more details about the exact meaning of a
figure, the notions of sum and difference, etc., see Section 22 and Section 23.

Using this theory of area, the remaining results (1.35)-(1.48) of Book 1 follow
without difficulty. Note in particular the Pythagorean theorem (1.47), which says
that the sum of the squares on the legs of a right triangle have equal content
with the square on the hypotenuse. Also, the results of Book II, (11.1)—(11.14),
phrased as results about equal content, all follow easily. Proposition (11.11), how
to cut a line segment in extreme and mean ratio, is used later in the construc-
tion of the regular pentagon. Only (11.14), to construct a square with content
equal to a given rectilineal figure, uses the axiom (E).

Theorem 12.3

In a Hilbert plane with (P), using the theory of area (12.2), Euclid's propositions
(1.35)—(1.48) and (11.1)-(11.14) can all be proved as he does, using the extra axiom (E)
only for (11.14). In particular, all these results hold in a Euclidean plane.

In Book 111, the first use of the parallel axiom is in (1I1.20), that the angle at
the center of a circle subtending a given arc is twice the angle on the circumfer-
ence subtending the same arc. This result uses (1.32), that the exterior angle of a
triangle is equal to the sum of the two opposite interior angles, and thus depends
on the parallel axiom (P). The following propositions (I11.21), (111.22), and then
(II1.31)-(I11.34) follow with no further difficulties. For the propositions (I11.23)-
(II1.30) we need a notion of “equal” segments of circles, a congruence notion
that has not been defined by Euclid, though we can infer from the proof of
(I11.24) that it means being able to place one segment on the other by a rigid
motion. Indeed, if we take this as a definition of congruence, then the proofs of
these results are all ok {Exercise 17.13). The final propositions (111.35)—(11.37)
make use of the theory of area for their statements, and depend on the earlier
area results from Books I and 1L

Theorem 12.4
In Book 111, Euclid's propositions (111.20)-(111.37) hold in any Euclidean plane. The
last three (111.35)-(111.37) make use of the theory of area (12.2).
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Most of the results of Book IV require the parallel axiom (P), some need
circle-circle intersection (E), and some, notably (IV.10), (IV.11), require (P),
(E), and the theory of area. Thus we may regard the construction of the regular
pentagon as the crowning result of the first four books of the Elements, making
use of all the results developed so far.

Theorem 12.5
All the propositions (IV.1)-(IV.16) of Euclid’s Book IV hold in a Euclidean plane.

We end this section with a discussion of two further axioms that are not
needed for Books I-1V, but will be used later. The first is Archimedes’ axiom.

A. Given line segments AB and CD, there is a natural number n such that n
copies of AB added together will be greater than CD.

This axiom is used implicitly in the theory of proportion developed in Book
V, for example in Definition 4, where Euclid says that quantities have a ratio
when one can be multiplied to exceed the other. It appears explicitly in (X.1), in
a form reminiscent of the sarguments of calculus: Given two quantities AB and
CD, if we remove from AB more than its half, and again from the remainder
remove more than its half, and continue in this fashion, then eventually we
will have a quantity less than CD. In modern texts this would appear as the
statement “given any ¢ > 0, there is an integer n sufficiently large that 1/2" < &.”
Euclid applies this “method of exhaustion” to the study of the volume of three-
dimensional figures in Book XII. When he cannot compare solids by cutting
into a finite number of pieces and reassembling, he uses a limiting process
where the solid is represented as a union of a sequence of subsolids so that the
remainder can be made as small as you like. See Sections 26, 27 for Euclid's
theory of volume.

Archimedes’ axiom is independent of all the axioms of a Hilbert plane or a
Euclidean plane, so we will see examples of Archimedean geometries that satisfy
(A) and non-Archimedean geometries that do not (Section 18).

The other axiom we would like to consider is Dedekind's axiom, based on
Dedekind's definition in the late nineteenth century of the real numbers:

D. Suppose the points of a line [ are divided into two nonempty subsets S, T in
such a way that no point of § is between two points of T, and no point of T is
between two points of S§. Then there exists a unique point P such that for any
AeSand any Be T, either A = P or B = P or the point P is between A and B.

This axiom is very strong. It implies (A) and (E), and a Euclidean plane with
(D) is forced to be isomorphic to the Cartesian plane over the real numbers. (See
Exercise 12.2, Exercise 12.3, (15.5), and (21.3).) So if you want a categorical
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axiom system, just add (D) to the axioms of a Euclidean plane. From the point
of view of this hook, however, there are two reasons to avoid using Dedekind's
axiom. First of all, it belongs to the modern development of the real numbers
and notions of continuity, which is not in the spirit of Euclid's geometry. Second,
it is too strong. By essentially introducing the real numbers into our geometry, it
masks many of the more subtle distinctions and obscures questions such as
constructibility that we will discuss in Chapter 6. So we include this axiom only
to acknowledge that it is there, but with no intention of using it.

Exercises

12.1 Show that in a Hilbert plane with (P), the perpendicular bisectors of the sides of a
triangle will meet in a point, and thus justify Euclid's construction of the circum-
scribed circle of a triangle (IV.5). Note: In a non-Euclidean geometry, there may be
triangles having no circumscribed circle: cf. Exercise 18.4, Exercise 39.14, and Prop-
osition 41.1.

12.2 Show that in a Hilbert plane Dedekind's axiom (D) implies Archimedes' axiom (A).
Hint: Given segments AB and CD, let T be the set of all points E on the ray D for
which there is no integer n with n- AB > CE. Let S be the set of points of the line CD
not in T, and apply (D).

12.3 Show that in a Hilbert plane (D) implies (E). Hint: Follow the discussion in Heath
(1926), vol. 1, p. 238.

12.4 For the construction and proof of (IV.2), to inscribe a triangle equiangular with a
given triangle in a given circle (assume also that you are given the center of the
circle), is axiom (E) necessary? Is {P) necessary?

12.5 Same question for (1V.6), to inscribe a square in a given circle.

12.6 In a Hilbert plane with (A), show that the exterior of a circle is a segment-connected
set (cf. Exercise 11.1). Without assuming either {P) or (A), this may be false ( Exercise
43.17).

To each book are appended explanatory
notes, in which especial care has been taken to
guard the student against the common mistake
of confounding ideas of number with those of
magnitude.

- Pretface to Potts' Euclid,
London (1845)




Geometry over
-~ Fields

CHAPTER

eginning with the familiar example of the real Carte-
sian plane, we show how to construct a geometry sat-
isfying Hilbert's axioms over an abstract field. The
axioms of incidence are valid over any field (Section
14). For the notion of betweenness we need an ordered
field (Section 15). For the axiom (C1) on transferring a
line segment to a given ray, we need a property (*) on
the existence of certain square roots in the field F. To
3 =)} carry out Euclidean constructions, we need a slightly
stronger property (#+)—see Section 16.

To prove the (SAS) axiom over a field F, we revert to Euclid’s method of
superposition. In the case of the geometry over a field this can be justified by
showing the existence of sufficiently many rigid motions (Section 17).

We end the chapter with some examples of geometries that do not satisfy
Archimedes’ axiom (Section 18).

We have seen that the geometry developed in Euclid's Elements does not
make use of numbers to measure lengths or angles or areas. It is purely geo-
metric in that it deals with points, lines, circles, triangles, and the relationships
among these.

In the centuries after Euclid, geometers began using numbers more and
more. At first number theory (arithmetic) and geometry were kept strictly apart.
Number theory dealt with positive whole numbers and their ratios, i.e., rational
numbers. Any other magnitude was considered geometrically. Thus /2 was not
regarded as a number. The fact that v/2 is irrational was expressed by saying
that the diagonal of a square (a geometrical quantity) is not commensurable
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with the side of the square. This means that no integer multiple of the diagonal
is equal to any integer multiple of the side. As algebraic notation developed in
the Renaissance, the concept of number was enlarged, and geometric quantities
were treated more like numbers. A big step was taken by Rene Descartes (1596-
1650), who showed in his book La Geometrie how to construct the product, quo-
tient, and square root of line segments, having once fixed a unit line segment. He
was thus able to apply algebraic operations to line segments and write algebraic
equations relating an unknown line segment to given line segments. Descartes's
use of algebra in geometry led to the idea of representing points in the plane by
pairs of numbers, and thus to the modern discipline called analytic geometry.

Meanwhile, the concept of number was expanded from rational numbers to
include irrational numbers and then transcendental numbers as they were dis-
covered. By the end of the nineteenth century, considerations of limits and con-
tinuity made the real numbers R into the standard to be used in analytic geom-
etry, calculus, and topology. Also at the end of the nineteenth century, the
formalization of abstract structures in mathematics led to the concept of a field,
so that by analogy with the standard model over IR, one could also consider a
geometry over any abstract field.

The geometry taught today in high schools and colleges has become a sort
of hybrid between the purely geometric methods of Euclid and the algebraic
methods of Descartes, with occasional notions of continuity thrown in. One of
the purposes of this book is to clarify the blurred distinctions between these dif-
ferent approaches. Therefore, we will pursue two different logical tracks. One is
the axiomatic approach of Euclid and Hilbert, starting with geometrical postu-
lates and proving results in logical sequence from them. This theory is built on
the platform of the axioms of geometry. The other track is a geometry over a
field. In this case the theory is built on a logical platform given by the algebraic
definition of a field, or as we may say, the field axioms. The geometrical notions
of point, line, betweenness, and congruence are defined in terms of field prop-
erties, and all proofs go back to the algebraic foundations. These geometries
built from fields will be models of the axiomatic geometries.

In this chapter we start with an informal section on the real Cartesian plane.
Then, in the following sections, we develop a rigorous theory of Cartesian
planes over an abstract field. In Chapter 4 we will make the two tracks converge
by the introduction of coordinates into an abstract geometry (at least in the case
where the parallel axiom (P) holds).

13 The Real Cartesian Plane

In this section we will make clear what we mean by the real Cartesian plane,
which is the plane geometry over the real numbers. Our proofs will be informal,
using well-known results from high-school geometry and analytic geometry.
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We accept as given the field of real ‘?-
numbers IR. We call a point an ordered
pair (a,b) of real numbers, and the set P=(a,b)
of all such ordered pairs is the Cartesian bp———- - 1

plane. As usual, we call the set of points
(a,0) the x-axis, and the set of points
(0,b) the y-axis, and their intersection
(0,0) the origin. (O}g} &

- —

A line in this plane is the subset defined by a linear equation ax + by + ¢ = 0,
with a, b not both zero. Among these are the vertical lines, which can be written
as x = a, and every other line can be written in the form y = mx + b. In this case
we call m the slope of the line, and b its y-intercept. For completeness, we will
say that a vertical line has slope .

Two lines are called parallel if they are equal or if they have no points in
common. By looking at the equations of two lines, and solving those equations
simultaneously, we see that the lines are parallel if and only if they have
the same slope. It follows immediately that if [}, I, I3 are three distinct lines, and
L||l and L||l5, then ]|l;. Indeed, all three must have the same slope. In Euclid's
Elements, this result appears as (1.30) and is proved there using the parallel pos-
tulate plus earlier results from Book I. Here in the Cartesian plane, we have a
trivial proof just by looking at the equations of the lines.

Let us give another, less trivial, example of how useful the analytic method
can be for proving geometric results. We will show that the three altitudes of a
triangle meet at a point. (Compare this with the geometric proofs given earlier
in Section 5.)

Proposition 13.1
In the real Cartesian plane, the three altitudes of any triangle all meet at a single
point.

Proof Recall that an altitude of a triangle is the line through one vertex that is
perpendicular to the opposite side. First let us move the triangle so that one
edge lies along the x-axis, and the opposite vertex lies on the y-axis.

The we can call the vertices A = (a,0), B=(0,b), and C = (¢,0). The y-axis is
by construction one of the altitudes of the triangle. Our strategy is to find the
equations of the other two altitudes, see where they meet the y-axis, and verify
that they meet it at the same point.

The line AB has slope —b/a, so the altitude through C, which is perpendicu-
lar to this line, will have slope a/b. (Here we use the fact that if two perpendic-
ular lines have slopes m; and mj,, then m;my = —1.) So the equation of the alti-
tude through C, using the point-slope formula, is
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y=§(?¢—f-‘)-

To intersect this with the y-axis, we set
x = 0 and obtain y = —ac/b. Bz (0,b)
Now consider the line BC. It has
slope —b/¢, so the altitude through A will
have slope ¢/b. Its equation becomes

c

y=-(x—a).

y=3@x-a

Setting x =0, we obtain y= —ac/b. »l

Since this is the same point as the pre- C = (c,0) A= (a,0)

vious calculation, we find that the three
altitudes meet at a point.

Let us reflect a moment on the significance of this proof.

First of all, the reader may object that we have used some facts without
proof, such as the result about the slopes of perpendicular lines, or the possibil-
ity of moving the triangle into the special position of the proof. However, I am
assuming that anyone who has studied some analytic geometry could fill in
those missing arguments satisfactorily.

The more serious question is, how do we respond to someone who says, with
a simple analytic proof like that, why bother with geometric proofs from axioms?
It you believe that there is only one true geometry, then indeed this proof would
be sufficient. But modern mathematics has abandoned the naive position that
there is only one truth. Instead it asks, what can be proved within each logical
framework, within each separate mathematical theory? This proof shows that
the result is true within the logical framework of the real Cartesian plane, using
algebra of the real numbers as a logical base. Having found the result to be true
in this framework, we certainly expect it to be true in the framework of axiom-
atic Euclidean geometry. However, this proof gives no hint at all about how to
find a proof in the abstract axiomatic geometry. In other words, if an analytic
proof shows that a result is true in the geometry of the real Cartesian plane, that
does not imply a proof, or even guarantee the existence of a proof, in the
abstract axiomatic geometry. For example, think of Archimedes' axiom (18.4.2).

For these reasons we will preserve two separate logical tracks, the abstract
axiomatic approach, and the analytic-zeometric approach, until such time as we
can prove that the two tracks converge again, using abstract ordered fields.

Next we turn to one of the great insights provided by the algebraic perspec-
tive, namely Descartes’s discovery that the ruler and compass constructions of
Euclid's geometry correspond to the solution of quadratic equations in algebra.
To be more precise, let us regard a construction problem as giving certain points
in the plane, and requiring the construction of certain other points.
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Theorem 13.2 (Descartes)

Suppose we are given points Py, = (a1, b)), ..., Py = (an, b,) in the rveal Cartesian
plane. (We also assume that we are given the points (0,0) and (1,0).) Then it is pos-
sible to construct a point Q = (o, f) with ruler and compass if and only if « and f§ can
be obtained from ay, ..., ay, by, ..., b, by field operations +, —, -, — and the solution
of a finite number of successive linear and quadratic equations, invelving the square
roots of positive real numbers.

Proof A ruler and compass construction consists of drawing lines through given
points, constructing circles with given center and radius, and finding inter-
sections of lines and circles.
Given two points Py = (a1, b;) and P; = (az, b;), the line passing through
them has equation
}?2 — ;?1
y—b =———(x—a).
Yy 1 ay —a ( 1)
Its coeflicients are obtained by field operations from the initial data a,.a;, by, bs.
A circle with center (a,b) and radius r has equation

(x — a)2 + (y — b)z = r2.
This is a quadratic equation whose coefficients depend on a, b, and r%. Note that
r may be determined as the distance between two points P, = (a;,b,) and P, =
{(az,b3), in which case

}’2 = (L’,ll - az)z + (bl — bz)z.

To find the intersection of two lines, we solve two linear equations, which
can he done using only field operations.

To intersect a line with a circle, we solve the equations simultaneously,
which requires solving a quadratic equation in x. Assuming that the line meets
the circle, we will need to take square roots of positive numbers only —cf. Exer-
cise 16.6.

To intersect two circles, we first subtract the two equations, which elimi-
nates the x? and y? terms. Then we must solve a quadratic with a linear equa-
tion, leading to another quadratic equation in x.

In other words, to find the coordinates of a point Q = (#, /) obtained by a
ruler and compass construction from the initial data P, ..., P,, we must solve a
finite number of linear and quadratic equations whose coefficients depend on
the coordinates (a;, b;) and on quantities constructed in earlier steps.

Conversely, the roots of any linear or quadratic equation can be constructed
by ruler and compass, given lengths corresponding to the coefficients of the
equations, and given a standard length 1. Indeed, such equations can be solved
(using the quadratic formula) by a finite number of applications of field oper-
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ations +, —, -, = and extractions of square roots of positive numbers, and each of
these five operations can be accomplished using ruler and compass.

For the sum and difference of two line segments, simply lay them out on the
same line, end to end for the sum, or overlapping for the difference.

For the product, lay the segment a on
the x-axis, and the segments 1, b on the
y-axis. Draw the line from 1 to a, which
will have equation y = —(1/a)x + 1. The
parallel line through b has equation
y = —(1/a)x+ b. This intersects the x-
axis in the point (ab,0), and thus we
construct the segment ab out of the seg-
ments 1,a,b.

For the quotient, put 1 on the x-axis,
and a, b on the y-axis. A similar construc-
tion gives the point b/a on the x-axis.

To construct the square root of a
segment a, lay out a on the positive x-
axis, and —1 on the negative x-axis.
Bisect the segment from —1 to a, and
draw the semicircle having that seg-
ment as diameter. A brief computation
with the equation of the circle shows
that it meets the y-axis at the point \/a.

b

Q@ el
b
o
| h/o
Vo
| ,
-1 ¢ o

So here we have an algebraic criterion for deciding the possibility of a ruler
and compass construction. The method of proof may not lead to an elegant con-
struction, but at least one can determine the possibility of such a construction in a
systematic manner. This theorem is a striking example of the insight into geo-
metrical questions given by the algebraic point of view. As Descartes (1637) says:

One can construct all the problems of ordinary geometry without doing anything
more than what little is contained in the four figures which I have explained,
which is something I do not believe the ancients had noticed: for otherwise they
would not have taken the trouble to write so many fat books, where already the
order of their propositions makes it clear that they did not have the true method for
finding them all, but merely collected those which they happened to come across.
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As a practical application of this result, we will find expressions using nested
square roots for some lengths that are constructible with ruler and compass,
such as the sides of regular polygons inscribed in a circle. Note that if a particu-
lar angle a« is constructible, then its trigonometric functions, in particular sina
and cos o, can be expressed using square roots.

For example, from the right isosceles
triangle with sides 1,1, /2 we obtain ﬁ

1
sin 45° = cos 45° = E\/E

From the 30°-60°-90° triangle with
sides 1,/3, and 2 we obtain

cos60° = sin30° = 1,

30

sin 60° = cos 30° = %ﬁ

™)

Proposition 13.3

The length of the chord d of a circle of
radius 1 subtending an angle « at the
center of the circle is given by

d=+/2 —2cosuo.

Proof The law of cosines gives d? =
12 4+ 1% — 2cosa, from which the result
follows immediately.
So for example, the side of the regular octagon inscribed in the unit circle
will be

d=+/2—2cos45° = /2 — /2.

Proposition 13.4
In a circle of radius 1, the length of the side of a regular decagon is %(\/E —1).

Proof Let us consider the triangle ABC formed by two radii and one side of the
decagon. Then AB = AC = 1, and BC = x is the side of the decagon. The angle at
A is 2m/10 or 36°, so the angles at B and C are 72° each. Let BD bisect the angle
at B. Then the two halves are both 36° angles. From this it follows that AABD is
an isosceles triangle, and ABCD is an isosceles triangle similar to the original
triangle AABC.
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Therefore, BD = x and AD = x and
CD =1 — x. Writing the ratios of corre-
sponding sides of the similar triangles
ABCD and AABC we have

l—x_

x
X 1

Hence x*+4x—1=0, and solving
with the quadratic formula gives x =

L1(+/5-1), as required.

Remark 13.4.1

This result allows us to give an analytic proof of the construction of the regular
pentagon (4.3). Indeed, letting the radius OA be 1, then OG = %, GA = 7v/5, and
OH = %(\/ﬁ —1). Thus A,I,] are vertices of the regular decagon, and so IJ is a
side of the regular pentagon. For another proof using complex numbers, see
(29.1).

Proposition 13.5
In a circle of radius 1, the side of the regular pentagon is % V10 — 24/5.

Proof Applying the law of cosines to the triangle AABC of (13.4), we get
12 =1% +x* — 2xcos 72°.

From this we obtain cos72° = i(\/ﬁ —1). Since a side of the regular pentagon
subtends an angle of 72° at the center of the circle, from (13.3) we have that the
side of the pentagon is

d=+2—2cos72° =1/10 - 2\/5.

Exercises

13.1 Given AB = 1, construct segments of length \/E \/§, \/% \/f_i, ﬁ, 410 in 5 steps or
fewer each, making the constructions independent of each other.

13.2 Show that any quantity obtainable from the rational numbers by a finite number of
operations +, —, -, <, v/ , can be written in a standard form v - A, where re @ is a
rational number and A is an expression involving only integers, +, —, -, and /.
In the following problems, please express vour answers always in standard form.
(Unfortunately, this standard form is not unique —see Exercises 13.7, 13.12 below )

13.3 Express (v/5 +1)/v/10 + 24/5 in standard form.
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13.7

13.8

13.9

13.10

13.11

1312

13.13

13.14

13.15

13.16
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Find sin22}° and cos22}° as expressions involving square roots in standard form.
Check your result by finding the decimal equivalent with a calculator.

Find the side of a regular 16-gon inscribed in the unit circle.

Find sin11%° and cos 11¥° in standard form.

Three students working on the same problem came up with the following answers.
a. =5+ 11 +6V2.

b. 347 —2/10.

C. \/Z + \/ra\/%

Two answers were correct, and one false. Find which two were correct, and prove
that they are equal. Can you express the correct answer in a simpler form? How
can you modify the third student's answer so that it becomes correct?

Find the length of the edge of a regular tetrahedron inscribed in a unit sphere.

Find the area of the largest equilateral triangle that is contained in a square of
side 1.

Ifa,b e Z, and if a + by'2 has a square root in Q(+/2), then the square root is actu-
ally in Z[v/2].

If a,be Z, give a method for deciding whether v a + W2e Z[\/E] Are the follow-
ing squares in Z[v/2]? If so, find the square root.

a. 627 + 4424/2.
b. 1507 + 1024+/2.
c. 2107 + 14702,

Verity

V5+2v5 — /5 — 245 = /10 — 21/5.

Also, show that none of these three nested radicals is in Q(+/5). This is another
example of nonuniqueness of the standard form.

Express sin 72° as nested radicals in standard form. Check by computing decimal
equivalents with a calculator.

Same problem for cos36°, sin 36°.

Find cos 247, sin 24°, cos12°, sin12°, and the side of the regular 15-sided polygon
inscribed in the unit circle. Express in standard form, and check decimal equiva-
lents with the calculator.

Find the side of a regular pentagon circumscribed around a unit circle.

Given a regular pentagon of side 1, find the distance from the center to a vertex, in
standard form.
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13.18

13.19

13.20

13.21

13.22

Given a right angle at O, a point B on
one arm, and a point A, construct with
ruler and compass a circle with center
O, meeting the arms of the right angle
at C, D, such that AD is parallel to BC
(par = 9 steps, not counting lines AD,
BC).

I
pea
v
J

Given segments of lengths 1,a,b in the plane, construct with ruler and compass
a length x satisfying x* — ax — b = 0. (If you use the quadratic formula, par = 21;
using geometrical ideas from Exercise 13.18, par = 14.)

Prove Euclid's (XI1IL.5), which says that the triangle formed of the sides of a penta-
gon, a hexagon, and a decagon inscribed in the same circle is a right triangle. Con-
clude that the segment AH in the construction of Problem 4.3 is equal to the side of

the pentagon.

Verity the following construction of a
regular pentagon in 13 steps, due to
H. Lenstra. The circle and its center O
are giver.

. line OA.

. circle AO, get B, C.

. line BC, get D.

. circle DO, get E.

line AE, get F.

. circle DF, get G, H!

. circle FG, get I K.

. circle FH, get L, M.

9-13. ines FI, IL, LM, MK, KF.

L2 [

SRR I T S

L S
2 \ -
6 \
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Find the field extension of @ obtained by adjoining the coordinates of the point
P = (a,b), the center of the inscribed circle of the triangle with vertices A = (0,0),
B=(-1,2), and C = (2,3). Answer: Q(v/2, /65).
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14 Abstract Fields and Incidence

In this section we start with the algebraic structure of a field, and based on this
field we will obtain a geometry. Thus, using a field, we obtain a model of the
abstract geometry determined by Hilbert's axioms. Different fields will give dif-
ferent geometries, so we will obtain many different models and many different
Euclidean geometries. We will investigate what properties of the field are needed
to make each of Hilbert's axioms hold. This will help demonstrate the indepen-
dence of the axioms.

Hilbert's axiom system is based on the undefined notions of point, line,
betweenness, and congruence for line segments and for angles. These undefined
notions are limited only by having to satisfy all the axioms.

To make a model of the geometry within another mathematical frame-
work, in this case algebra, we must say what the interpretation of the undefined
notions is to be in our model, and then we must prove that the axioms hold in
this interpretation.

We start then, with a field, and to fix the ideas we recall the definition of
a field.

Definition
A field is a set F, together with two operations, +, -, i.e., for each a,b € F there
are given a+ b € Fand a - b € F, subject to the following conditions:

(1) The set F, together with the operation +, forms an abelian group, namely,

(i) (a+b)+c=a+ (b+c)forany a,b,ceF,
(ii) a+b=b+aforany a,b eF,
(iif) there is an element 0 € Fsuch thata+ 0 =a forall a e F,
(iv) for each a e F there is an element —a € F such that a + (—a) = 0.

(2) The set F* = F — {0}, together with the operation - forms an abelian group,
namely,

(i) (ab)c = a(bc) for all a,b,c € F*,
(i) ab = ba for all a,b e F*,

(iii) there is an element 1 € F* such thata-1 = a for all a € F*,
(iv) for all a € F*, there is an a™! € F* such thata-a™! = 1.

(3) The operations + and - are related by the distributive law
a(b + ¢) = ab + ac.

Note in particular that in our definition of'a field 0 # 1, and multiplication is
always commutative. We leave to the reader to verify other elementary prop-
erties of a field, suchas0-a=0forall ae F.

Our first step in making a geometry is to say what we mean by points and
lines. Of course, we take our cue from the “standard” model of Euclidean ge-
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ometry, the real Cartesian plane, given by ordered pairs of real numbers. This is
the geometry we might call “high-school geometry,” where the axiomatic and the
analytic approaches are not clearly distinguished, and we assume that every-
thing is over the real numbers. In that model we suppose that everyone already
“knows" what points, lines, angles, betweenness, and congruence mean.

But now, since we are starting with an arbitrary field F, which may not be
the real numbers, we need to make our definitions precise.

Definition

The plane 11 (or Iy if we want to indi-
cate the field), called the Cartesian plane
over the field F, is the set F? of ordered
pairs of elements of the field F, which
we call the points of 1. A line is a subset
defined by a linear equation

ax+by+c=0

tor some a,b,ceF, with a,b not both

ZETO. /

Any line can also be written in
either the form x = ¢, in which case we K

call it vertical, or the form y = mx+ b.
In the latter case we say that the line
has slope m, and for the line x = ¢, we
say it has slope . Here oo is just a
symbol (it is not an element of the field
F).

Example 14.0.1
Let F be the field of two elements F = {o, {1
{0,1} with addition and multiplication
(mod?2). Then the plane Il over F has
exactly four points and six lines, shown
schematically in the diagram. Note in {0, (1,01
particular that the two “diagonal” lines
do not meet in this geometry.

Proposition 14.1
If F is any field, the Cartesian plane 1y satisfies Hilbert's incidence axioms (11),
(12), (13), and the parallel axiom (P).

Proof (I1) says that any two points lie on a line. Since we can perform rational
operations +, —, -, = in the field F, the usual “two-point formula” of analytic ge-
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ometry shows that we can find a linear equation, with coefficients in the field F,
that determines a line containing the two given points.

(12) says that every line has at least two points. Since any field F has at least
the two distinct elements 0,1, by putting x = 0,1 if the line has the form
y = mx + b, or by putting y = 0,1, if the line is x = ¢, we obtain two points on
any line.

(13) says that there exist three noncollinear points. Indeed, we can always
take (0,0), (0,1), (1,0), and we can see easily that these do not lie on any line.

(P) says that there is at most one parallel to a given line [ through a given
point P. In fact, the stronger statement holds that there is exactly one line paral-
lel to I through P, so that I1 will be an affine plane, in the terminology of Exer-
cise 6.5. Recall that parallel means that two lines do not meet unless they are
equal. In the plane I, we see immediately that two lines are parallel if and
only if they have the same slope. So given a line [, let its slope be m. Then the
familiar “point-slope” formula of analytic geometry shows that there is a unique
line of slope m passing through the point P. This will be the parallel to L

Before introducing the further notions of betweenness and congruence into
our Cartesian plane over a field F, there are already some interesting con-
nections between algebraic properties of the field F and incidence properties in
the plane Iy To investigate these, it is useful to be able to change coordinates.

Proposition 14.2
In the Cartesian plane 11 over a field F, it is possible to make a linear change of
variables

{x’=ax+by+c,
Yy =dx+ey+f

such that the new coordinate axes are any two given intersecting lines, and the new
unit points are any given points P, Q on them not equal to thelr intersection point E.

Proof Since a composition of linear changes of variables is again one, we can
proceed one step at a time. First, a change of the form

X =x-a, '3
Yy =y-—b,
will move the origin (0,0) to the point
E = (a,b).
Next, a transformation of the form

x' = ax, {01} ¢
y' = by, X

will move the unit points to any other {0,0) {,0)

points on the same axes.
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Then, a change of the form ‘3' ?

{ X =x- ay,
¥ =y, 5 (%y)

will keep the x-axis fixed, but replace
the y-axis by another line through the (0,1) A~/
.. . 1
origin. The x-axis may be moved by an-
other such transformation, interchang- Xz X
ing the roles of x and y. (1,0
¥

Combining all these gives a transformation that moves the original axes and
unit points to any other desired axes and unit points.

Remark

Since the change of coordinates is linear, lines in the new coordinate system are
still given by linear equations, so it is equivalent to describe the geometry of the
plane Il using either the old or the new coordinates.

Now we give some applications.

Proposition 14.3
There exists a configuration in the plane g of four points A,B,C,D such that
AB||CD, AC||BD, and AD||BC if and only if the characteristic of F is 2.

Proof 'We have already seen the existence (14.0.1), since any field F of charac-
teristic 2 contains the subfield {0,1} of two elements with addition and multipli-
cation (mod 2).

For the converse, suppose that such a configuration exists in I1z. Then make
a linear change of coordinates such that C becomes the new origin, and A, D are
the unit points. Then B will be the point (1,1); BC will be the line x = y, and AD
will be the line x + y = 1. In this configuration, AD||BC, so the equations x = y
and x + y = 1 must have no common solution. Solving, we obtain 2x = 1, which
has a solution in F as long as 2 # 0. We conclude that this configuration exists
only if 2 = 0, i.e., the charactistic of I is 2.

Proposition 14.4 (Pappus's theorem)

In the Cartesian plane over a field F, suppose we are given lines I,m and
points A,B,Cel and A’,B',C" e m such that AC'||A'C and BC'||B'C. Then also
AB'||A'B.
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Proof Suppose that [, m meet at a point
O (we leave the case I||m as Exercise
14.1). Choose coordinates such that O is
the origin, and A, B' are the unit points.
Let C be the point (0,a) and let C' be
the point (b,0). Then writing the equa-
tions of the lines involved, we find that
B = (0,ab) and A'= (ab,0). Thus the
line BA' has slope —1, hence is parallel
to AB'.

Remark 14.4.1

B
AN
AN
A
~
c hY
\
A AN
\
N
B’ c! A’

It is possible to define a Cartesian plane over a skew field F (which is an al-
gebraic structure the same as a field, except that the multiplication need not
be commutative). Then Hilbert (1971) has shown that the skew field F is
commutative if and only if Pappus's theorem holds in the associated plane

.

Example 14.4.2

In the Cartesian plane over the field F,
assuming characteristic 0, there is a
configuration such as the one shown
(where all lines that appear parallel are
assumed to be parallel, namely DE|BC,
DF||AC, EF||AB, GH||BC, and BH||GE) if
and only if V2 e F.

Indeed, to analyze this situation,
take B to be the origin, BC and BA the
axes, and D, F' the unit points. Then A =
(0,2), E=(1,1), C=(2,0). Let G have
coordinates (0,a). Then H = (2 — a,a).
The line BH will have slope a/(2 — a),
and the line GE will have slope 1 — a.
The parallelism BH|GE then requires
a/(2—a) =1—a, or, equivalently, a* —
4a+ 2 = 0. Solving with the quadratic
formula gives a = 2 + V2.

For this configuration to exist, it is
necessary and sufficient that a € F, and
this is clearly equivalent to /2 € F, as
required.

w2
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Exercises

14.1 Show that Pappus’s theorem (Proposition 14.4) still holds in [lf in the case that

I||m.

14.2 Show that Desargues's theorem holds
in the Cartesian plane over a feld
F: Given a configuration as shown,
with AC||A’C" and AB||A'B', prove that
BC||B'C".

14.3 We define a skew field (also called a division ring) to be the same as a field, but
without assuming property 2(ii), that multiplication is commutative.

(a) Using the same definition of points and lines, show that the Cartesian plane
over a skew field F still satisfies the incidence axioms (11)-(13) and (P), as in Prop-

osition 14.1.

(b) Show that a skew field is commutative (i.e., is a field) it and only if Pappus's
theorem (Proposition 14.4) holds in the Cartesian plane over F.

For each of the following problems, assume that yvou are working in the Cartesian
plane Il over a field F of characteristic 0. Give necessary and sufficient conditions on the
field F for the given configuration to exist. Assume that all lines that appear to be parallel
are parallel, and apparent right angles are right angles.

14.4 Ans: v3eF.

e

14.5 Ans: 13 e F.
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14.6 14.7

14.8

14.9

In each of the following four problems, suppose that you are given the triangle ABC.
Make a ruler and compass construction of the diagram shown. In the first three, D, E, F
are the midpoints of the sides. In the last, they are one-third of the way along each side.
(Par = 20 to 25 steps each.)

14.10 A
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14.11
14.12 A
D £
B ) -
F.
14.13 A

F

15 Ordered Fields and Betweenness

The next undefined notion we need to interpret in the Cartesian plane over a
field is betweenness. It turns out that this is not possible over an arbitrary field.
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We will have to impose some additional structure on the field to make a defini-
tion of betweenness possible. To see why this is so, suppose we had a notion of
betweenness in our geometry. Then the x-axis (whose points are in one-to-one
correspondence with the elements of our field F) could be divided into subsets
consisting of the “positive x-axis" meaning all points on the same side of 0 as 1,
the origin 0, and the “negative x-axis” consisting of all points on the other side of
0 from 1. In this way we can define a notion of “positive” elements of the field F,
analogous to the usual notion of positive real numbers.
This leads to the concept of an ordered field.

Definition
An ordered field is a field F, together with a subset P, whose elements are called
positive, satisfying:

(i) fa,be P, thena+ bePand abe P.
(ii) For any a € F, one and only one of the following holds: ae P; a = 0; —a e P.

Here are a few elementary properties of an ordered field.

Proposition 15.1
Let F, P be an ordered field. Then:

(a) 1eP, ie, 1isa positive element.

(b) F has characteristic 0.

(c) The smallest subfield of F containing 1 is isomorphic to the rational numbers Q).
(d) Foranya# 0€F, a*cP.

Proof (a) In any field, 1 # 0, so either 1 e P or —1 € P. If 1 € P we are done. If
—1 e P, then by (i), also (—=1) - (=1) = 1 € P, which contradicts (ii). Hence 1 € P.

(b) Since 1eP, 1 +1+1+---+1 any number of times is also in P. In par-
ticular, such a sum is never 0, so F has characteristic 0.

(c) The natural map of the positive integers N to F given by n goes to
1+ 1+ -+ 1(ntimes) is injective, by (b), and extends to an injective map of Q
to F whose image is (1) isomorphic to @ and (2) the smallest subfield of F con-
taining 1. Whenever no confusion can arise, we will identify @ with its image
in F. So for example, it n € Z, then n will also denote the corresponding element
of F.

(d) If a # 0, then either ae Por —a e P. If ae P, then a? € Pby (i). If —ae P,
then (—a)(—a) = a’ € P.

Proposition 15.2
In an ordered field F. P, we define a>bifa—beP, and a<b if b—aeP. This
notion of inequality satisfies the usual properties, namely:

(i) Ifa >bandceF,thena+c > b +c.
(ii) Ifa > b and b > ¢, thena > c.
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(iii) Ifa > b and ¢ > 0, then ac > be.
(iv) Given a,b € F, one and only one of the following holds: a > b; a = b; a < b.

Examples 15.2.1
The rational numbers @ form an ordered field, where we take for P the positive
rational numbers, in the usual sense.

15.2.2 The field of real numbers R is an ordered field with the usual notion
of positive elements.

15.2.3 The field of complex numbers € cannot be an ordered field (i.e.,
there is no subset P of € satisfying the definition) because 1> = —1 < 0, which
contradicts (15.14).

15.2.4 Since an ordering on a field is extra structure, in general there may
be more than one way to make a given abstract field into an ordered field. For
example, let F = Q(\/E). Then F is a subfield of IR, so we can make it into an
ordered field by taking P to be the subset of elements of F that are positive in IR.
But there is another embedding ¢ : F — R given by ¢(a + by/Z) = a — by/2 for all
a,b e @, and we can put another ordering on F by taking P to be the set of ele-
ments x € F for which ¢(x) > 0 in R.

Proposition 15.3

If Fis a field, and if there is a notion of betweenness in the Cartesian plane 1l sat-
isfying Hilbert's axioms (B1)-(B4), then F must be an ordered field. Conversely, if
F,Pis an ordered field, we can define betweenness i 1l so as to satisfy (B1)-(B4).

Proof First suppose that F'is a field and that there is a notion of betweenness in

the plane Il satisfying (B1)-(B4). We define the subset P = F to consist of all

aeF, a0, such that the point (a,0) of the x-axis is on the same side of 0 as 1.

Since addition in the field corresponds to laying out line segments consecutively

on the x-axis, it is clear that a,be P = a+ b e P.
For multiplication, given a,be P,

put a on the x-axis, put 1,b on the y-

axis, draw the line from (0,1) to (a,0),

and draw the line parallel to this one b

through (0, D). It will meet the x-axis in

the point (ab,0). Now clearly, 1,a,be

P=abeP (we leave to the reader to |

see exactly how this follows from (B1)-

(B4)!), so P satisfies the first property of

the definition of an ordered field. By - >

construction, F is the disjoint union of O o ab

PU{0}U—P, so that F,P is an ordered

field.
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Now suppose conversely that F,P is a given ordered field. We define be-
fweenness for points on a line as follows: Let A = (ay,az), B= (b, 1), C = (c1,¢3)
be three distinct points on a line y = mx + b. We say that B is betiveen A and
C(A*Bx*Q)if

eithera; < by <c¢; or a; > b > .

It the line is vertical, we use instead the second coordinates in the same way.

We must verify the axioms (B1)-(B4).

(B1) is obvious from our definition.

(B2) follows from the corresponding fact, true in any ordered field, that
given b > d e F, there exist a,c, e € F such that a < b < ¢ < d < e. Indeed, we can
always take, for example, a =b 1, ¢ =1(b+4d), and ¢ = d + 1. Note that since
F has characteristic 0, by (15.1), 1 € F.

(B3) follows from the fact that in an ordered field F, if a, b, ¢ are three distinct
elements, then one and only one of the following six possibilities can occur:

a<b<c
a<c<b
b<a<c;
b<c<a;
c<a<b;
c<b<a.

(B4). Suppose we are given a triangle ABC and a line [ that meets the side
AB. Assuming A, B,C ¢ [, we must show that [ also meets either AC or BC, but
not both.

First suppose that the line [ is verti- ? A e
cal, with equation, say, x = d. Let a, b, ¢ B
be the x-coordinates of A,B,C. By hy- >
pothesis, either a <d<b or b<d> a. ¢

By symmetry, let us assume a < d < b.
Then it is clear if ¢ < d (as in the pic-
ture), then [ will meet BC but not AC. If
¢ > d, then [ will meet AC and not BC, 0 d
as required.

If | is not vertical, we make a change of coordinates (14.2) such that I
becomes vertical. Since linear changes of variables either preserve or reverse
inequalities, this does not affect the notion of betweenness, and so we are
reduced to the previous case.

To complete this section, we will discuss Archimedes’ axiom (A) and Dede-
kind's axiom (D) —cf. Section 12.
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Proposition 15.4
Let F,P be an ordered field. Then the Cartesian plane 11p will satisfy (A) or (D) if
and only if the field F satisfies the corresponding property for a field, namely:

(A") (Archimedes' axiom for a field). For any a > 0 in F, there is an integer n such
that n > a.

(D') (Dedekind’s axiom for a field). Suppose we can write the field F as the disjoint
union of two nonempty subsets F = SU T, and assume that forallae Sand allbe T
we have a < b. Then there exists a unique element ¢ € F such that for all a € S and all
be Twe have a <c < b.

Proof For (A), we can choose coordinates such that the first segment AB is a
unit segment. If C and D on the same line correspond to elements ¢ < de F,
then n copies of AB will exceed CD if and only itn > d — ¢.

For (D), choose coordinates such that the line in question is the x-axis, and
identity its points with elements of F. Then the statements are the same.

Proposition 15.5

Let F be an ordered field satisfying Archimedes’ axiom (A'). Then F is isomorphic,
with its ordering, to a subfield of R. Furthermore, in this case, F satisfies Dedekind's
axiom (D'} if and only if this subfield is equal to R.

Proof 'We saw earlier (15.1) that F contains a subfield Fy isomorphic to @. This
gives us a unique isomorphism g, : F; — @ < R. We will extend ¢, to an iso-
morphism of F into IR. Let o € F. Because of Archimedes' axiom, there are in-
tegers both smaller and bigger than «. So let ay be the unique integer n such that
n<o<n+ 1l Next define a, %Z to be the unique one-tenth integer such
that a1 < o < a1 + 1/10. Similarly, define az e (1/100)Z such that a; <o <
az +1/100. Continuing in this way we obtain a sequence ay <a; <a; < --- of
rational numbers with the property that for each n, a, <« < a, + 107" In the
field of real numbers IR, these converge to a certain real number, which we call
@(x). This defines a map ¢@:F—R. It is easy to verify that
p(a+ ) = @(2) + @(f) and p(xf) = p(=) - p(f). So ¢ is a homomorphism of fields,
which is necessarily an isomorphism onto its image. One checks also that
o< f = p(a) < p(f), soitis an order isomorphism of F onto ¢(F) < R.

Now, condition (D) on F is equivalent to (D") on @(F), since the fields are
order-isomorphic. Each real number r e IR is characterized by the sets Z, =
{aeR|a <7} and X, = {ae R|a > r}, so clearly (D) holds in ¢(F) if and only

if p(F) = R.

Remark 15.5.1
As a converse to this result, note that any subfield F of IR becomes an ordered
field if we take for P < F those elements of F that are positive (in the usual
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sense) in R. Thus the study of Archimedean ordered fields is equivalent to the

study of subfields of R.

See Section 18 for some examples of non-Archimedean ordered fields.

Exercises

151
15.2

154

15.6

If a > 0in an ordered field F, show that a=! > 0 also.

Let # be an ordered field, and let a > 0. Show that if @ has a square root in F, i.e., an
element b e F such that b* = a, then a has exactly two square roots in F, one of
which is positive and the other negative. We use the notation 4/a to denote the posi-
tive square root.

Let F be an ordered field, let d > 0, and suppose that d does not have a square root
in F. Let F(v/d) denote the set of all a + bV/d, with a, b € F, where Vd is a square root
in some extension field of F.

(a) Show that F{1/d) is a field.

(b) Show how to define an ordering on F(v/d), with \/d > 0, such that it becomes an
ordered field.

In an ordered field F, show that Dedekind’s axiom (D') implies Archimedes’ axiom
(A"). Hint: If F did not satisty (A"), let S={xe F|Ine Z, with « < n}, and let T =
F— 8. Then apply (D).

In the proof of Proposition 15.5, verify that g(cf) = @(x) - ().

If Fis a skew field (Exercise 14.3), together with an ordering defined as in this sec-
tion that satisfies Archimedes' axiom (A’), then in fact F is a field. Hint: Show that
the proof of Proposition 15.5 still works.

16 Congruence of Segments and Angles

Next, we need to define the notion of congruence for line segments and for
angles. We assume from now on that we are starting from an ordered field F, P,
s0 that we have betweenness as studied above. Then we can define the line seg-
ment AB to be the set of all points on the line AB that are between A and B, plus

the
the

endpoints A, B. We would like to define congruence of line segments using
usual Euclidean distance function (motivated by the theorem of Pythagoras

(1.47)) for two points A = (ay,az), B = (b1, b;), namely,

diSt(A,B) = \/(&1 - bl)2 + (6{2 - b2)2.
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However, our field F may not have square roots in it, so we will use instead the
“distance-squared’’ function

diStz(ﬁ,B) = (al - b1)2 + (az - bz)z.
This will give the same notion of congruence.

Definition
Two line segments AB and CD in the Cartesian plane over an ordered field F are
congruent it

dist?(A, B) = dist?(C, D).

Since congruence is defined using the function dist? from line segments to the
field, the axiom (C2), transitivity of congruence, will be obvious. Notice that
because of the ordering on F, if A, B are distinct points, then dist>(A, B) > 0.

Next we will define congruence for angles, by defining a function tano e F
for any angle «. This is motivated by the usual tangent function of trigonometry,
but since we are working over an abstract field, you should not assume any
properties of this function until they have been proved.

Recall that a ray is a subset of a line
consisting of a point plus all the points
of the line on one side of that point. An
angle is the union of two rays emanating
from the same point and not lying on
the same line. The interior of the angle «
consists of all points of the plane that
are on the same side of [ as ' and on
the same side of I as r.

We say that an angle is a right angle
if the slopes of the lines its rays lie on
satisfy mun’ = —1. Then we say that an
angle is acute if it is contained in the
interior of a right angle; it is obtuse if it
contains a right angle in its interior.

Definition

If o is an angle formed by two rays r,r’
lying on lines of slopes m, m’, we define
the tangent of « to be

r
m —m
tano = +|——
1+ mm’

where we take + if the angle is acute
and — if the angle is obtuse.
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The awkwardness of this definition is due to the fact that the slopes depend
only on the lines and do not distinguish the rays on those lines. So any formula
using slopes cannot distinguish an angle from its supplement. We cannot use the
usual definition of tangent, as side opposite over side adjacent, because that
needs square roots (Exercise 16.3).

Note also that by this definition, the tangent of a strictly acute or strictly
obtuse angle is an element of the field F, while the tangent of a right angle we
take to be the symbol oo. In case one of the slopes m or m’ in the definition is oo,
we can still make sense of the formula by using rules (Exercise 16.2) such as

oo —m 1

1+m-oo m

Definition
Two angles in the Cartesian plane over an ordered field F are congruent if they
have the same tangent, considered as an element of the set F U {a0}.

Because congruence is defined by a function with values in F U {cc}, axiom
(C5), transitivity of congruence, becomes obvious.

Proposition 16.1
Let F be an ordered field, and let 11y be the associated Cartesian plane. Then g
satisfies axioms (C2)-(C5). Furthermore, (Cl) holds if and only if F satisfies the
condition

(¥) For any element a € F, the element 1 + a* has a square root in F (in which
case we say that the field F is Pythagorean).

Proof (C2) is transitivity of congruence of segments, which follows immedi-
ately from our definition of congruence using the dist? function.
(C3) is left as an exercise (Exercise 16.1).
(C4) is the axiom about laying off
angles. So suppose we are given an an-
gle o and a ray emanating from a point
A with slope m. We must find a line
passing through A with slope m’ such
that PR

m' —m
tano = +

1+ mm’

- «
where the sign is adjusted according to - K\) A

whether « is acute or obtuse. This gives
equations that are linear in m', and so
can be solved in F. We obtain
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, m + tana
m

1 F mtano
The two solutions give angles on either side of the given line through A, so that
we can construct the new angle o' on the desired side of the line.

(C5) is the transitivity of congruence of angles, which is immediate from our
definition of congruence using the tangent function.

Now let us consider the axiom (C1)
about laying off line segments. This
does not hold over an arbitrary field.
For example, let @ be the field of ratio-
nal numbers. Then the segment from
(0,0) to (1,1) cannot be laid off on the x-
axis, because its length, /2, is not in the . o
field. {0, v (i,0)

Over an arbitrary field F, if ae F is
any element, let us consider the seg-
ment from (0,0) to (a,1). There will be
a segment congruent to this one, laid off
on the x-axis starting from 0, only if [G, 1}
there is an element b € F such that

dist?((0,0), (a, 1)) = dist*((0,0), (b, 0)). 0
This says that
1+a? =52

(o) Y,

¥
T
=3

Thus we need b € F that is a square root of 1 + a*. In other words, if (C1) holds
in 1y, we must have the condition () on the field F.

Conversely, suppose that F satisfies (*), namely, for any ce F, we have
V1 +c? e F. Then for any a,b € F, with a # 0, we can write

2
a’ 4+ b? = a.z(l 4 (9) )
&l

Now letting ¢ = b/a we see that
Var+bt=|al - v1+c?

is also in F. From this is follows that for any two points A, B € 1, the distance
between A, B is also in F, so we have the distance function

diSt(A,B) = \/(al - b1)2 + (ag - bz)z cF.

Now suppose that we are given a line y = mx + b and a point A on the line,
and suppose we wish to lay off a segment of length d. We can write A =
(a,ma + b), and we are looking for a point C = (¢, mc + b) on the same line such
that
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dist(A,C) = d.
This says that

Via—¢)2+ (ma+b—(mc+b))?=d,
which becomes

la—c¢|-v1+m?2=d.

Since F satisfies (#), the quantity +/1 + m? is in F, so we can solve this equation
for ¢. Note that there will be two solutions, corresponding to the two directions
from A along the line L

Remark
We defer consideration of (C6), the (SAS) axiom, to the next section, where we
discuss rigid motions and FEuclid’s method of superposition.

To complete this section, we discuss the intersections of lines and circles.
Recall from Section 11 the circle-circle intersection property, which we called
axiom (E), and the line-circle intersection property (LCI), which was proved in
(11.6) as a consequence of (E).

Proposition 16.2
Let 11 be the Cartesian plane over an ordered field F. Then the following conditions
are equivalent:

(i) 11 satisfies the circle-circle intersection property (E).
i) [II satisfies the line—circle intersection property (LCI).
properiy
(iii) the field F satisfies (==): For any ae F, a > 0, there is a square root of a in F
(in which case we say that the field F is Euclidean).

Proof (i) = (ii). Let f= 0 be the equation of a circle, and let g = 0 be the equa-
tion of a line. Then f+ g = 0 is another circle, whose intersections with the first
circle are the same as the intersections of the first circle with the line. Thus (E)
implies (LCI).
(ii) = (iii). Now we assume (LCI)

and we must prove that F has square T
roots of positive elements. Given an ele- G
ment ae F, a > 0, consider the points
0 =(0,0),A=(a,0),and A’ = (a+ 1,0).
Let ' be the circle with center 0 AVA ’
(3(a+1),0) and radius {(a+1). Con-
sider the vertical line [ through the
point A. Clearly, A is inside the circle,
so by (LCI), the line | must meet the cir-
cle I' in a point B. Solving the equations,
we find that B = (a,+/a), so yJa e F.
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(iii) = (i). This time we assume the existence of square roots of positive ele-
ments in F, and must prove (E). If I and IV are circles in 11, their equations can
be written

(x—a)*+ (y—b)*=r?,

(x=c)*+(y—d)* =+,

where (a,b) and (c,d) are the centers of the two circles, and r,s their radii
(which are elements of F because of our hypothesis (#+) on existence of square
roots).

Normally, solving two quadratic equations simultaneously would lead to a
fourth-degree equation, but in this case, the coefficients of x* and y? in both
equations are 1. Thus we can subtract one equation from the other to get a linear
equation. This can be solved simultaneously with one of the quadratic equations
using only square roots, and so, using (+#), the intersection points of the circles
have coordinates in F, so they exist in the plane II. We leave to the reader the
troublesome verification that if I' and I’ satisfy the hypothesis of (E), then the
square roots we need will be square roots of positive elements of F, so will exist
by (=x); cf. Exercise 16.6.

Remark 16.2.1
This shows that (E) and (LCI) are equivalent in the Cartesian plane over any
ordered field F; cf. (11.6.1).

Proposition 16.3

Let Q be the set of all real numbers that can be expressed starting from the rational
numbers and using a finite number of operations +, —, -, =, and ¢ +— /1 + ¢%. (Note
that for any ce R, 1 +¢* > 0, so V1 4+ c? € R.) Then Q is an ordered Pythagorean
field.

Proof To show that Q is a field, let a, b € Q. Then each of a, b can be expressed
in a finite number of steps using rational numbers and operations +, T
¢ V1 + ¢?. Hence the same is true of a + b, a - b, and a/b, provided that b 7‘—* 0.
If ¢ is any element of Q, then ¢ can be expressed in a finite number of such
steps, so V1 + ¢? can also, and so 1 + ¢? € Q. Hence Q is Pythagorean. ( is an
ordered field, because it is a subfield of IR, so we can take P to be those elements
of Q that are positive as real numbers.

Remark 16.3.1

Clearly, Q is the smallest Pythagorean ordered field. We call it Hilbert's field,
since he studied it in his Foundations of Geometry (1971). It is also the smallest
field over which all of Hilbert's axioms of betweenness and congruence will hold
(17.3).
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Proposition 16.4

Let K be the set of all veal numbers that can be obtained from the rvational numbers
by a finite number of operations 4, —, -, =, and a > 0 — «/a. Then K is a Euclidean
ordered field.

Proof Similar to the proof to (16.3). Note that we may take square roots only of
positive elements. Since K is also a subfield of IR, we get the ordering on K from
R as above.

Remark 16.4.1

We call this the constructible field because it is the smallest field over which we
can carry out ruler and compass constructions. Note also that Q € K, since
1+ ¢? > 0 for any ¢ € Q. To show Q # K, see Exercise 16.10.

Exercises

16.1 If I1 is the plane over an ordered field F, show that (C3), congruence of added line
segments, holds. Do not assume that F is Pythagorean.
16.2 Make up a set of rules for dealing with oo so that we can do arithmetic in F U {0}
and get the results we want with slopes and tangents of angles.
16.3 Let ABC be a triangle with a right angle at C in the Cartesian plane over an ordered
field F satistying (#). If o is the angle at A, show that
dist(B. C)
tano = — -
dist(A, C)
16.4 If F is a Pythagorean ordered field, prove the triangle inequality in the correspond-
ing plane Il, namely, if A, B, C are three points in I1, then

dist{A, C) < dist(A, B) + dist(B, C),
and equality holds if and only if A, B, C are collinear and B is between A and C.

16.5 Using the definition of the tangent of an angle given in the text, verify that for any
two acute angles o, ff,

tan o + tan ff

tan(o + ff) = ————.
(@ +f) 1 —tanatanfl

16.6 Let Il be the plane over a Euclidean ordered field F. Verify that a circle I' meets a
line [ in two points if and only if | has a point inside I'. Hinf: Compute the shortest
distance from the center O of the circle to the line [. Show that this is less than the
radius of the circle if and only if the square roots needed to solve the equations are
square roots of positive elements.
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16.7

16.8

16.9

16.10

16.11

16.12

Let F'be an ordered field (without assuming Pythagorean or Euclidean).

(a) Show that the associated plane Il contains an equilateral triangle if and only if

V3eF

(b) Show that there exists an equilateral (but not necessarily equiangular) penta-

gon in Il if F = Q(v3), Q(v/11), or Q(v/15), but not if F = Q.

Let F'be an ordered field (without assuming Pythagorean or Euclidean). Let A, B be
points of the associated plane 1. Show that the circle I with center A and passing
through B has infinitely many points on it. Hint: First do the case of the circle of
radius 1 and center (0, 0) over Q.

(a) Show that cos72" and sin72° are in Hilbert's field Q.

(b) Prove that a regular pentagon inscribed in a unit circle exists in the Cartesian
plane over the field Q.

Totally veal field extensions (this exercise requires some knowledge of field theory).
We consider algebraic rambers, which are complex numbers satistying some poly-
nomial equation with rational coefficients. We denote the set of algebraic numbers
by @Q. An algebraic number a € @ is totally real if it and all its conjugates are real. A
subfield F = @ is totally real if all its elements are totally real. We say that a e @ is
totally positive it it and all its conjugates are real and positive. Show the following:

(a) If F = @ is a totally real subfield, and if a € F is a totally positive element, then
the extension field F' = F(\/a) is totally real.

(b) If ay,...,a, are elements of a totally real field F, then Ea? is a totally positive

element of F.

(c) Hilbert's field Q (Proposition 16.3) is a totally real field.

(d) The number a = v/1 + v/2 is in the constructible field K (Proposition 16.4) but
not in . Thus Q < K.

Use ideas from (Exercise 16.10) to give an example of three line segments in the
Cartesian plane over Q, any two exceeding the third, but such that the triangle with
sides equal to those segments does not exist. Thus (1.22) fails in this plane.
The converse of Exercise 16.10b is a theorem of Emil Artin: If b is a totally positive
element of a subfield I = @), then there exist elements a;,...,a, € F such that
b = Zal. Fill in the details of the following outline of a proof of this theorem.
(a) Replacing F by Q(b), we may assume that F is a finite totally real extension
of @.
(b) Let

§ = {Za?|a, € F, not all zero}.

Show that the set 8§ is closed under addition, multiplication, and multiplicative
inverses, and that 0 ¢ 8. Hint: Write §7! = ($71)?S.
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(c) Now let b be a totally positive element of F, and suppose that b ¢ 8. We will
show that this leads to a contradiction. Let 8’ = 8§ — bS, and show that 8’ is closed
under +, -, inverses, and that 0 ¢ 8.

(d) Let # be the set of all subsets P = F such that 0¢ P,S" = P, and P is closed
under +, -, inverses. Use Zorn's lemma to show that % has a maximal element.

(e) If Pe # is a maximal element, show that I, P is an ordered field. You only have
to check the trichotomy: If a # 0, and —a ¢ P, consider P' = P+ aP and use maxi-
mality to show P' = P, so a € P.

(f) Use the fact that F is algebraic over @ to show that the ordering is Archimedean.
(g) Now use Proposition 15.5 to get an embedding ¢ : F — R with ¢(b) < 0, yield-
ing a contradiction.

16.13 Verify the result of Exercise 16.12 directly for the field Q(+/2), without using its
proof.

16.14 Using Exercise 16.12, show that Hilbert's field Q is equal to the set of totally real
elements in the constructible field K.

17 Rigid Motions and SAS

Our first goal in this section is to show that Hilbert's axiom (C6), the “side-
angle-side' criterion for congruence of triangles, holds in the geometry over an
ordered field F. This will complete the proof that all of Hilbert's axioms hold in
the Cartesian plane over a field. After that we will study the properties of rigid
motions in an arbitrary Hilbert plane.

One could criticize Hilbert for taking a statement as complicated as (SAS) for
an axiom, just as one could criticize Euclid for his fifth postulate, which is so
much less elementary than his others. The response in both cases is the same:
One cannot avoid including a statement as an axiom if one cannot prove it from
the other axioms. Now, Euclid did not include (SAS) as an axiom, but “proved”
it as (1.4). His proof has been justly criticized, because he used the “method of
superposition,” which involves moving one triangle and placing it on top of the
other. This cannot be justified on the basis of Euclid's postulates and common
notions. In fact, if you think about it, the possibility of moving figures around,
without distorting their shapes, is a rather strong statement about homogeneity:
The geometry is similar in different parts of the space. This is a deep fact not to
be taken lightly or assumed without proof.

Curiously enough, in order to show that (SAS) holds in the geometry over a
field, we will use Euclid’s method of superposition, but only after proving that it
makes sense. We will define the notion of rigid motion of a plane and show that
there are enough of them to make Euclid's method work.




17. Rigid Motions and SAS 149

Conversely, we will prove the existence of rigid motions in an arbitrary Hil-
bert plane. Thus the existence of enough rigid motions is essentially equivalent
to the statement (SAS), in the presence of the other axioms. This gives a satis-
factory modern understanding of the meaning of Euclid's method of super-
position. It also introduces us to the group of rigid motions of the plane and val-
idates Felix Klein's point of view, expressed in his “Erlanger Programm" in the
late nineteenth century, that one should classify different geometries according
to the groups of motions that act on them.

To start with, we define the notion of a rigid motion.

Definition

If 11 is a geometry consisting of the undefined notions of point, line, between-
ness, and congruence of line segments and angles, which may or may not sat-
isfy various of Hilbert's axioms, we define a rigid motion of Il to be a mapping
@ : Il — Il defined on all points, such that:

(1) ¢ is a 1-to-1 mapping of the points of 11 onto itself.
(2) @ sends lines into lines.

(3) ¢ preserves betweenness of collinear points.

(4) For any two points A, B, we have AB = ¢(A)p(B).
(5) For any angle o, we have / o = / ¢(2).

In other words, ¢ preserves the structures determined by the undefined
notions in our geometry.

Remark 17.0.1

For example, the identity transformation of I to itself, which leaves every point
fixed, is a (trivial) rigid motion. It is clear that the set G of all rigid motions
forms a group, because the composition of any two is another one. We will use
functional notation for composition: g(A) = ¢((A)). However, it is not obvi-
ous in general that there are any other rigid motions besides the identity.

Now we can express what is needed to justify Euclid's method of super-
position in the following principle

ERM (Existence of Rigid Motions)

(1) For any two points A, A’ eI, there is a rigid motion ¢ €G such that
p(A) = A",

(2) For any three points O, A, A’, there is a rigid motion ¢ € G such that ¢(0) =
O and ¢ sends the ray OA to the ray OA'.

(3) For any line [, there is a rigid motion ¢ € G such that ¢(P) = P for all Pe [ and
@ interchanges the two sides of L.
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Proposition 17.1
In a plane satisfying the incidence and betweenness axioms, and assuming (C2), (C5),
and the uniqueness portions of (C1) and (C4) only, (ERM) implies (C6) = (SAS).

Proof We are now assuming the exis-

tence of rigid motions (ERM) and will B’
prove (SAS) by Euclid's method. So

suppose we are given two triangles ABC A
and A'B'C’, and suppose AB = A'B’, B

AC = A'C',and / BAC = / B'A’C’. Then

we must show that AABC = AA'B'C’, ¢’
namely, that BC = B'C’ and the angles A

at B, C are congruent to the angles at B’ t
and C’, respectively.

By (ERM) (1), there is a rigid motion ¢ that takes A to A’. Let B" = ¢(B).
Then AB = A’B”, since ¢ is a rigid motion and AB = A’B’ by hypothesis, so
A'B' = A'B" by (C2).

Next, by (ERM) (2), there is a rigid motion { that leaves A’ fixed and
sends the ray A'B” to the ray A’'B’. Sine A'B” = A’B’, and 1 preserves congru-
ence, we conclude from the uniqueness portion of (C1) that y(B”) = B'. Let
C" = Yp(C).

Then we consider the line [ = A’B’, and the two rays A'C" and A'C". If they
are on the same side of I, we do nothing, but if on opposite sides, then by (ERM)
(3) there is a rigid motion ¢ leaving the points of [ fixed and interchanging the
sides.

Let us denote by # € G the composition ¢, or oyp if we used g. Then #
has the following properties: §(A) = A’, 8(B) = B', and C" = 0(C) is on the same
side of A'B" as C’.

Since ¢ is a rigid motion, / BAC = /[ B'A'C". But also / BAC = / B'A'C’
by hypothesis, so by (C5), £ B'A’C' = / B'A'C". Furthermore, C" and C" are on
the same side of A’B’. So by the uniqueness portion of (C4) we conclude that the
rays A'C" and A'C" are equal.

Now, A'C' = AC by hypothesis, and AC = A'C", since 6 is a rigid motion, so
by (C2) A'C’ = A'C"™. Furthermore, C’ and C" are on the same side of A’. So by
the uniqueness portion of (C1) we conclude that C" = C".

Thus 0(B) = B' and 0(C) = C". Since @ is a rigid motion, BC = B'C’ as re-
quired. Similarly, for the angles, ! takes /. ABC to /. A'B'C'. So ) being a rigid
motion, we conclude / ABC = / A’B’C’. The same method shows / ACB =
/£ A'B'C'. This concludes the proof of (SAS).

Next we will show that (ERM) holds in the Cartesian plane over a field.
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Theorem 17.2
Let F be an ordered Pythagorean field, and let 11 be the associated Cartesian plane.
Then (ERM) holds in 11.

Proof We think of Il as having coordinates (x,y). We will consider certain
transformations of Il defined by functions of ¥ and y, we will show that these
are rigid motions, and then we will see that there are enough of them to prove
(ERM).

First of all, consider a point A =
(a,b) and the transformation 1 (called a
translation) given by

{x’=x+a,

’

y =y+h.

~A<=lab)

Clearly, t is 1+to-1 and onto, because it
has an inverse

{x:x’—a,
y=1y" — b

Aline y = mx + k under this transformation becomes

y—b=mx —a)+k

In particular, its image is a line, so we see that 7 takes lines into lines. Next,
we notice that the slope of the new line is the same as the slope of the old line,
so T preserves angles. Clearly, T preserves betweenness, because this reduces to
questions of inequalities in the field F, which are unchanged by adding con-
stants.

Finally, we must check that t preserves the dist? function to get congruence
of segments. This is obvious, since we add the same constant to the coordinates
of two points A, B, so in computing the dist? function we get the same value.

Thus the mapping r is a rigid motion. Given two points B, C, we can take a, b
to be the difference of their x- and y-coordinates, so 7(B) = C, and we have sat-
isfied condition (1) of (ERM).

To prove condition (2) of (ERM) we will consider rotations. A rotation of the
plane I1 is a transformation p defined by

x'=cx — sy,
Yy = sx + ¢y,

where ¢,s € Fand ¢? + s> = 1. The inverse of this transformation is given by

x =cx' + sy,
y=—sx'"+cy
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Theretore, p is 1-to-1 and onto. Being linear, p takes lines to lines, and a brief
calculation shows that a line with slope m is transformed to a new line with
slope

!

cm —+ 8
mo=

T c—sm
Since linear transtormations either preserve or reverse inequalities, {! preserves
betweenness.

Next, we show that p preserves angles. Given two lines with slopes m; and
my, let m{ and m} be the new slopes. Since congruence of angles is determined
by their tangents, it will be enough to show that

my —m, My —my

14+mim, 1+mmy

This is an elementary calculation (left to the reader).
Finally, let us see what happens to the distance function. Let A and B be two
points. Then another amusing little calculation, left to the reader, shows that

dist(p(A), p(B)) = dist(A, B).
Hence p is a rigid motion.

Now we can verify condition (2) of (ERM). Given three points O,A,A', we
must shoithat there is a rigid motion leaving O fixed and taking the ray OA to
the ray OA’. By using a translation, we can reduce to the case O = origin. Let
y = mx and y = m'x be the lines containing A and A’. Any rotation leaves O
fixed, so to send the first line to the second, we have only to find ¢, s € F with
¢? + 5% =1 such that

, CM-+s

m =
C = 8m

according to the formula above. Solving for s we obtain
m' —m
§=-—"—0C¢C.
1+ nun'
Let k be the coefficient (m' —m)/(1 + mm’). Then we can solve s = k¢ and
s2+¢? =1byc=+1/V1+ k2, using the Pythagorean property of F.

So we have two rotations taking the first line to the second, differing by the
rotation ¥’ = —x, y' = —y. One of these will send the ray OA to the ray OA'
as desired.

To complete the proof of (ERM), we must verify condition (3), that for every
line I, there is a rigid motion (called a reflection) leaving [ pointwise fixed and
interchanging the two sides of I. Using a translation from a point of [ to the
origin O, we may assume that O € [. Let A be any ot_hfzr point of I, and let p be
the rotation that sends the positive x-axis to the ray OA. Let g be the reflection in
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the x-axis defined by

{ X' =z,

y' = -y

Clearly, this is a rigid motion that leaves the x-axis pointwise fixed and inter-
changes the two sides. Now ¢ = pap~! is the required reflection in the line I.

Theorem 17.3

If F'is any Pythagorean orvdered field, then the Cartesian plane 11 over Fis a Hilbert
plane satisfying the parallel axiom (P). The plane 11 will be Euclidean if and only if
Fis Euclidean.

Proof We have previously verified the incidence axioms (11)-(13) and (P) in
(14.1), the betweenness axioms (B1)-(B4) in (15.3), and the congruence axioms
(C1)-(C5) in (16.1). Now, from (17.2) we know that (ERM) holds in I, and
therefore by (17.1) also (C6) holds. For the plane to be Euclidean, i.e., to satisfy
(E), it is necessary and sufficient that the field F be Euclidean (16.2).

Next we will prove a sort of converse to (17.1), namely that (ERM) holds in
any Hilbert plane.

Proposition 17.4
In any Hilbert plane (cf. Section 10), there are enough rigid motions: (ERM) holds.

Proof First we will show the existence of reflections. Then we will build other
rigid motions out of these.
Suppose we are given a line . We
will construct a rigid motion o, called
the reflection in [, that leaves the points
of' l fixed and interchanges the two sides A B
of I. For any point P € | we define ¢(P) = 9
P. For any point A ¢ [, drop the perpen- e
dicular AAp to [, and extend it on the .
far side of I so that AAp, = AgA". Then Ao -,Bo
we set 6(A) = A'. Clearly 6% = id, so o is
1-to-1 and onto. .
Let A, B be any two points not on [.
We will show that AB = A'B’, where A
og(A) = A', and o(B) = B". If A,B lie on
the same line perpendicular to I, this is
immediate from subtracting congruent
line segments. If A,B are on different
perpendiculars, as in the figure, let
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Ag,By be the feet of those perpendiculars. Then AAjAB; is congruent to
AApA'By, using the right angles at Ay, by (SAS). Therefore, the angles / ABgA,
and /. A'ByAy are congruent. Subtracting from the right angles at By, we find that
[/ AByB = / A’ByB’. On the other hand, ABy = A’B, from the first triangles. Now
we can apply (SAS) again to conclude that AAByB = AA'ByB’. In particular,
AB = A'B’ as claimed.

B
Now suppose A, B,C are three non-
AT e : . A c
collinear points whose images by a are
A B' C'. Then by (8SS) we conclude
that AABC = AA’B'C’, and in particular, £
L BAC =/ B'A'C'". Thus ¢ preserves

angles. From here it is easy to verify

. !
that o preserves lines and betweenness, A
s0 in fact, ¢ is a rigid motion (details left c /
to reader).

To verify that (ERM) holds, we have just established property (3) by the
existence of reflections. If A, A" are any two points, let [ be the perpendicular
bisector of the segment AA’. Then o; will send A to A”. Thus condition (1) of
(ERM) holds. For condition (2), let O, A, A’ be three points. Let I be the bisector
of the angle / AOA’. Then the reflection g; will leave O fixed and send the ray

N —
OA to the ray OA'. Thus (ERM) holds. Note that for this proof we need the exis-
tence of the perpendicular bisector of a line segment (1.10) and (1.11), and the
bisector of an angle (1.9), which exist in a Hilbert plane by (10.4).

Corollary 17.5
In the presence of all the axioms of a Hilbert plane except (C6), the axiom (C6) is
equivalent to (ERM).

Proof Combine (17.1) and (17.4).

Remark 17.5.1

One can give the rigid motions an even more prominent position in the founda-
tions of geometry by using them to define congruence, as follows. Suppose we are
given a set of points with undefined notions of lines and betweenness satistying
axioms (11)—(13) and (B1)-(B4) as before. Suppose also that we are given a group
G of transtormations of this set, called motions, that preserve lines and between-
ness and suppose further that G satisfies the following axioms (similar to (ERM)):

(1) Given two rays, and given a side of each line containing one of the rays,
there is a unique motion ¢ € G that takes one ray to the other and the given
side to the given side.

(2) For any two distinct points A, B, there exists a motion of G that interchanges
the two points.
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(3) For any two rays emanating from the same point, there exists a motion of G
that interchanges the two rays.

Then one can define congruence of segments and angles by requiring the
existence of a motion in G that sends one to the other, and one can prove that
this notion of congruence satisfies the axioms (C1)-(C6) and so makes a Hilbert
plane. See Hessenberg-Diller (1967), Sections 37-39. Bachmann (1959) carries
this idea a step further, by eliminating points and lines altogether and giving a
set of axioms for geometry based on the group G above (cf. discussion in Section
43).

Exercises

17.1 In the proof of Theorem 17.2 verity that:
(a) Rotations preserve angles.
(b) Rotations preserve distances.

17.2 Let @ : I1 — Il be a map of a Hilbert plane into itself. For any point A, denote p(A)
by A" Assume AB = A'B’ for any two points A, B.

(a) Prove that ¢ is 1-to-1 and onto.
(b) Show that in fact, @ is a rigid motion.
17.3 In a Hilbert plane I1, show:

(a) Any rigid motion with at least three noncollinear fixed points must be the
identity.

(b) Any rigid motion is equal to the product of at most three reflections.

17.4 In a Hilbert plane [1, define a rotation around a point O to be a rigid motion p leav-
ing O fixed and such that for any two points A, B, the angles / AOA’ and / BOB' are
equal, where p(A) = A', p(B) = B'. Show:

(a) For any two points A, A" with OA = 0A’, there exists a unique rotation around
O sending A to A",

(b) The set of rotations around a fixed point O, together with the identity, is an
abelian subgroup of the group of all rigid motions.

(¢) Any rotation can be written as the product of two reflections.
(d) A rigid motion having exactly one fixed point must be a rotation.

17.5 In a Euclidean plane I1, define a translation to be a rigid motion 1 such that for any
two points A, B, we have AA" = BB, where 1(A) = A’, 1(B) = B'. Show:

(a) For any two points A, A', there exists a unique translation t such that r(A) = A"
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(b) If t is a translation, then for any two points A, B, we have AB|A'B’' and
AA'||BB'.

(c) The set of translations forms an abelian subgroup T of the group of all rigid
motions.

(d) Any translation is a product of two retlections.

(e) Is the group T of translations a normal subgroup of the group G of all rigid
motions? Prove yes or no.

17.6 In this exercise we establish an alge-
braic interpretation of the group of
rotations around a point in a Cartesian
plane. Let Fbe an ordered field. In the
Cartesian plane Il over F, let I be the T‘ A= (f;g}
unit circle, and let E = (—1,0). Let a
line | through E meet the circle at a L
point A.

m
p
®

(a) If the line 1 has slope f, show that O
the coordinates of the point A are
(e,s), where
11—+t 2t
(=, S§=—.
1427 1+t

(Note: We use this notation because if F = IR, and if o is the angle that OA makes
with the positive x-axis, then by trigonometry, we obtain t =tanle, ¢ = cosa,
s = sinu, and these are the usual formulas for expressing ¢, s in terms of t. Do you
remember those substitutions used in calculus classes for rationalizing trigono-
metric integrals?)

(b) Let p, be the corresponding rotation
x = cx — sy,
P! : I . .
Yy =sx+cy,

as defined in the text. Show that p, is also a rotation in the sense of Exercise 17.4,
and show that the mapping t — p, gives a 1-to-1 correspondence between the set
FU{w} and the group R of rotations of Il with center O.

(¢) Under the correspondence in (b), show that the group operation in R corre-
sponds to the operation

in the set F'U{o}. We call the set F'U {a0} with the operation o the circle group of
the field F.

(d) If F =R, show that the circle group of I' is isomorphic to the abstract group
(R/Z,+).
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17.7

17.8

17.9

17.10

17.11

17.12

17.13

Let F be a field (not necessarily an ordered field) that does not contain a square
root of —1. In analogy to the situation above, we define the circle group of F to be
the set C(F) = F U {0} with the operation

a+b
aob:l

tor a,be C(F).

(a) Verify directly that C(F), ¢ is an abelian group by verifying the group axioms.
Make clear your rules for treating co (cf. Exercise 16.2), and point out where you
use the hypothesis /-1 ¢ F.

(b) Show that +1,—1 are elements of finite order in C(F).

(c) If F =@, show that +1, o are the only elements of finite order different trom
the identity.

(d) If F= R, find explicitly four elements of order 5 in C(F).

With F a field as in Exercise 17.7, consider an extension field F(i) with i = +/—1.
Elements of F(i) can then be written as o« = a+ bi, a, b e F. Define the norm of an
element o by N(a) = a® + b2,

(a) For any o, f € F(i) verify that N(aff) = N(«)N(f).

(b) Let 8 = {xe F(i) | N(z) =1}. Then S is a group under multiplication. Show that
the map § — C(F) defined by

t=da+bi— —
a+1

is an isomorphism of (8, ) with the circle group (C(F), o).

Note: This mysterious isomorphism is motivated by the figure in Exercise 17.6, in
which t =tan Lo =s/(c+1).

Let Fbe a finite field of p elements, p = 3(mod 4).

(a) Show that —1 does not have a square root in F.

(b) Show that the circle group C(F) is cyclic of order p + 1.

Let ABC and A'B'C’ be two congruent triangles in a Hilbert plane. Show that there
exists a rigid motion ¢ of the plane with ¢(A) = A’, ¢(B) = B', and ¢(C) = C".

In a Euclidean plane, show that the product of two rotations around different points
is equal to either a rotation around a third point or a translation. Hint: Show that it
has at most one fixed point.

In a Euclidean plane, show that the product of an odd number of reflections cannot
be equal to the identity. Hint: Use Exercise 17.11 to reduce products of four reflec-
tions to products of two reflections, and proceed by induction.

In a Hilbert plane, let us define one segment of a circle to be congruent to another
segment of a circle if there exists a rigid motion of the plane that makes the first
coincide with the second. Using this notion of congruence of segments, show that
Euclid’s results (111.23) =(111.30) and their proofs are all ok in a Euclidean plane.
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17.14 (Theorem of three reflections).

(a) Given three lines a,b, ¢ through a point O, show that there exists a unique
fourth line d such that

TeThTa = Od,

where o denotes the retlection in a given line. Hint: Let A be a point of a, and take
d to be the perpendicular bisector of AC, where C = g.01(A). (See Proposition 41.2
for an analogous result in hyperbolic geometry.)

(b) Given three lines a,b,c perpendicular to a line I, show that there exists a
unique fourth line d such that .00, = g,.

18 Non-Archimedean Geometry

The Archimedean principle, that given two line segments, some multiple of the
first will exceed the second, is so embedded in our experience of the world that
it is hard to imagine a geometry in which this would not hold. Even the farthest
star has a distance from the earth that can be measured in light years, and even
if we take the inch as our standard unit of length, some number of inches, albeit
a very large number, will exceed the distance to that farthest star. As long as we
retain the notion that geometry somehow represents the real world, we are
bound to accept Archimedes’ principle as a truth.

In abstract mathematics, on the other hand, a geometry is anything that sat-
isfies a certain set of axioms. In this chapter we have seen how to construct a
geometry over an abstract ordered field. The elements of the field need not be
numbers or distances. Any abstract field will do.

We will take advantage of this abstraction to construct some non-
Archimedean geometries. These examples will serve two functions. One is to
show the independence of Archimedes' axiom (A) and Playfair's axiom (P) from
the axioms of a Hilbert plane. The other is to free our minds from the con-
straints of habit by studying the properties of a logically constructed geometry
in which Archimedes’ axiom (A) does not hold. Such geometries are called non-
Archimedean geometries.

Proposition 18.1

Let R be the field of real numbers, let t be an indeterminate, and let R(t) be the field
of all rational functions of t, that is, all quotients f(t)/g(t) where f and g are polyno-
mial functions of t with real coefficients and g(t) is not identically zero. Then the field
F = R(t) has a natural ordering that makes it into a non-Archimedean ordered field.

Proof 1f g € F, we think of ¢ as a function ¢(t) = f(t)/g(t) from R to R, defined
everywhere except at the finite number of points where g(t) = 0. We define the
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set P of "positive” elements of F to be the set of those functions ¢ that are posi-
tive for all large enough values:

P={peF|3ay € R such that ¢(b) = 0 for all b > ag}.

Note that ¢ > 0 if and only if the quotient of the leading coefficients of fand g is
positive in R. Now, F is a field, because any sum, difference, product, or quo-
tient of rational functions is again a rational function. The set P is closed under
sums and products, because the sum and product of two eventually positive
functions is again eventually positive. To show that (F, P) is an ordered field, it
remains to show that if p € F, ¢ # 0, then either ¢ € P or —¢ € P, but not both.
Indeed, if ¢ # 0, then it is the quotient of two nonzero polynomials ¢ = f(1)/g(t).
Each of these has a finite number of zeros. If we take ap € R larger than all the
zeros of f(t) and g(t), then ¢ is continuous and never 0 for all b > a;. Thus by
the intermediate value theorem, ¢ is either always positive for b > ay, or always
negative for b > ay. In the first case ¢ € P; in the second case —¢ € P.

Now consider the element t € F. For any integer n > 0, we have t > n as ele-
ments of F. Indeed, for b > n, the function ¢(t) = t — n is positive. Thus the field
Fis non-Archimedean. Note that in this field we have

O<l<2< - <tgt+lct42< <2 atda. .

Definition

Let F be a non-Archimedean ordered field. We will say that an element a € F is
finitely bounded it there exists a positive integer n for which —n < a < n. Other-
wise, we say that a is infinite. We say that an element a € F is infinitesimal if for
every positive integer n, we have —1/n < a < 1/n. An element of F is finite if it
is finitely bounded but not infinitesimal.

Next we will construct non-Archimedean fields satisfying the Pythagorean
property (#) of (16.1) and the Euclidean property (=) of (16.2).

Proposition 18.2
There is a (non-Archimedean) Pythagovean ovdered field Q' containing the field R(t).

Proof We start with the field R(t) of rational functions in an indeterminate ¢,
described above, and we consider R(t) as a subset of the set € of all continuous
real-valued functions from R to IR, defined at all except a finite number of
points, and having only a finite number of zeros (except for the identically 0
function). Beware that % is not a field(!) because, for example, the functions 2
and 2 4+ sint are in %, but their difference sint is not in %, because it has infi-
nitely many zeros. Nevertheless, ¥ has a nice order, because we can define the
subset Py of positive functions as before: ¢(t) € % is positive if Jag € R for which
@(b) > 0 for all b > a,. Then Py satisfies properties (i) and (ii) of the definition of
an ordered field, even though % is not a field. We use the fact that a continuous
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function on an interval (ag, o) that has no zeros is either always positive or
always negative.

Now let Q' be the set of all elements of % that can be obtained from R(t) by a
finite number of operations +, —,-, =, and ¢ — v'1 + ¢?. The hard part is to show
that ' is a field. Once we know that Q' is a field, the Pythagorean property is
easy, because for any ¢ € 4, 1+ ¢? is a function that is strictly positive whenever
it is defined (at all except the finite number of points where ¢ is not defined), so
v'1+ ¢? is another such function, hence also in €. Thus if c € Q', V1 +c2eQ’
also. We make Q' into an ordered field by taking as the positive elements
P'=P,N Y, and P’ satisfies (i) and (ii) because Py does.

Lemma 18.3
Let F be a subset of Q' that is a field, and let w € F,v/1 + w2 ¢ F. Then

F'={a+ pV1+ w?|e,f e F}

is also a subset of Q' that is a field.

Proof First we show that every element of F’ is in Q'. Since «, f, w are obtained
from R(t) by a finite number of operations +, —,-, =, ¢+ /1 + ¢2, so are the
elements of F'. The elements of F' are defined except at the finite number of
points where a, §, v may fail to be defined. They are continuous because o, ff, @
are. The only problem is to show that « + fv'1 + @? has only finitely many
zeros. Any zero tg of this function satisties

alto) + fto) /1 + w(t)? = 0.
Separating the two pieces, squaring, and combining again we obtain
a(to)? — Blto)*(1 + (to)*) = 0.
In other words, f; is a zero of the function
a? — (1 + w?) eF.

Hence there are only finitely many such zeros, since F < Q’. Note that
o+ fv1+w? is not identically zero because then 1+ w?eF. Thus
o + fiv/1 + w? has only finitely many zeros, and so F' < Q.

To show that F' is a field is standard. It is clearly closed under +, —, -. And to
show closure under + one rationalizes the denominator by multiplying by its
conjugate:

atb/f c—dJf (a+bJf)c—dVf)
c+d\/_ c—d\/f c2 —d*f -

Proof of 18.2 (continued) To show that Q' is a field, suppose «,ff € Q'. We must
show that o + f, - f, o/f € Q' (provided that ff # 0). Since « is obtained from
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R(t) by a finite number of operations +, —,-, =, @+ /1 + w?, by applying the
lemma each time we take a square root, we obtain a subfield F < Q' that con-
tains o. Now, starting trom F, and applying the lemma again each time we use a
square root in the description of ff, we obtain a field F< G = Q/, with «,f € G.
Then clearly, « £ f, o f, a/fe G= Q.

Proposition 18.4
There is a (non-Archimedean) Euclidean field K' containing R(t).

Proof We follow the same plan of proof as for (18.2), except that now we con-
sider the space %’ as follows: ¥’ consists of continuous real-valued functions de-
fined on some interval (ay, 50) of R that are never 0. Two functions fon (ag, %)
and g on (a;, w) are equivalent if a, > ag, a; such that f=g on (az, o). We say
that f is positive if for some ag, f(b) > 0 for all b > a,. The set Py of positive
functions clearly satisfies (i) and (ii) of the definition of ordered field. Note again
that %’ is not a field. But if p € €', ¢ > 0, then VP E %' also.

Now we take K to be the set of all elements of %" that can be obtained from
R(t) by a finite number of operations +, —, -, =, and ¢ > 0+ /p.

The proof that K’ is a field can be carried out exactly as in the proof of (18.2).
Clearly, K' is Euclidean, and taking P’ = K' N P, makes K' into an ordered field.

Example 18.4.1

Let Il be the Cartesian plane over the field Q' of (18.2). Then II is a Hilbert
plane satisfying (P) but not (A). In particular, this shows that (A) is independent
of the axioms of a Hilbert plane.

Example 18.4.2
Let 11 be the Cartesian plane over the field K’ of (18.4). Then 11 is a Euclidean
plane that does not satisty (A).

Example 18.4.3

Let II be the non-Archimedean geometry described in (18.4.2). Let I1; be the
subset consisting of all points of Il whose distance from the origin is finitely
bounded. A line of I1; will be the intersection of a line of Il with I1;, whenever
that intersection is nonempty. Take betweenness and congruence to have the
same meaning as in 1. Then I, is a Hilbert plane satisfying neither (A) nor (P).
In particular, this shows that (P) is independent of the axioms of a Hilbert plane.

To help visualize a non-Archimedean geometry, let us imagine for a moment
that we live in a non-Archimedean universe. What we perceive with our tele-
scopes are very large, but still finite, distances; what we observe with our cyclo-
trons and particle accelerators are very small, but still finite, quantities. And vet
out beyond the farthest stars are other parallel universes, and inside each ele-
mentary particle are infinitesimal worlds unknown to us. Perhaps they exert
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some subliminal influence on our lives? How could we determine whether our
universe is indeed non-Archimedean when we see only the finite part of it?

Exercises

18.1

18.2
18.3

18.4

18.5

18.6

18.7

18.8

In the ordered field R(t), arrange the following elements in increasing order:
0,1,5,6,1/t,t+ 1, 1/(t+ 1), t =1, 26,62 — ;02 — 1,6+ 1 (¢ —1)/(t+1).

Show that the field Q' of Proposition 18.2 is not Euclidean, by showing that /f ¢ Q.

Show that the plane [l of Example 18.4.3 satisfies the axioms for a Hilbert plane.
Pay special attention to (12), (B2), and (C1).

Again let Il be the plane of Example 18.4.3.
(a) Show that Iy does not satisty (P).

(b) Show that Il; does satisty (1.32): The angle sum of every triangle is two right
angles.

(c) Show that Il does not satisfy (IV.5), by giving an example of a triangle that has
no circumscribed circle.

Let Il be the non-Archimedean plane of Example 18.4.2. Define a subset [1; of 11 to
be all the points of 11 whose distance from the origin is infinitesimal.

(a) Show that I1; is a Hilbert plane.

(b) Show that I1; does not satisty (P). Thus I1; gives another example of the inde-
pendence of (P) from the axioms of a Hilbert plane.

We say that a Hilbert plane is finitely bounded if there exists a segment AB such that
for every other segment CD, there exists an integer n, depending on CD, for which
CD < n-AB.

(a) Any Archimedean Hilbert plane is finitely bounded.
(b) The plane I1; of Example 18.4.3 is finitely bounded but not Archimedean.
(

¢) The plane I1; of Exercise 18.5 is not finitely bounded. In particular, the planes
[y and I1; are not isomorphic Hilbert planes.

We say that the rectangle axiom holds in a Hilbert plane if whenever a quadrilateral
has three right angles, then the fourth angle is also a right angle.

(a) The rectangle axiom holds in any Hilbert plane with (P).

(b) The rectangle axiom holds in the examples Il and I1; above. Thus the rectangle
axiom does not imply (P).

Let Fbe any ordered field. Generalize the proof of Proposition 18.1 to show that the
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18.9

field F(t) of rational functions in an indeterminate t is a non-Archimedean ordered
field. (Be careful not to use continuity.)

Let F be any ordered field. Let F((t)) be the set of Laurent series

o0
0= z.ﬁe,r’, a, # 0,

i=zn

where the a; € F and neZ can be positive, zero, or negative. Define ¢ > 0 if its
leading coefficient a,, > 0 in F.

(a) show that F({t)) is a field.

(b) Show that F((t)) is a non-Archimedean ordered field.

(c) An element g € F((t)) is a square if and only if its order n is even and its leading
coefficient a, is a square in F.

(d) It F'is Pythagorean, show that F((t)) is also Pythagorean. This gives another
method of constructing Pythagorean non-Archimedean ordered fields.

Let man and woman form a circle

From which grows a square;

Around these put a triangle,

Embed them all in a sphere:

Then you will have the philosopher’s stone.
If in your mind this does not soon appear,
Geometry, well learned, will make it clear.

- from Atalanta Fugiens
by Michael Maier (1618),
Epigramma XXI.







Segment
Arithmetic

CHAPTER

egment arithmetic allows us to complete the chain of
i logical connections between an abstract geometry sat-
| isfying axioms studied in Chapter 2 with the geo-
metries over fields studied in Chapter 3. We will show
how to define addition and multiplication of line seg-
ments in a Hilbert plane satisfying the parallel axiom
(P). In this way, the congruence equivalence classes
of line segments become the positive elements of an
—— ¢ ordered field F (Section 19). Using this field F we can
recover the usual thf'or3 of similar triangles (Section 20).
To complete the circle, we show that it you start with a Hilbert plane II sat-
isfying (P), and if F is the associated field of segment arithmetic, then II is iso-
morphic to the Cartesian plane over the field F (Section 21).

19 Addition and Multiplication of Line
Segments

In studying Euclid's Elements, we have noted the absence of numbers in his de-
velopment. There is no notion of the length of a line segment, for example.
There is an undefined notion of congruence of segments, which we can think of
as the segments being the same size. This is in contrast to ordinary high-school
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geometry, where each segment has a length, based on some chosen ‘unit” seg-
ment, which is thought of as a real number, and two segments are congruent if
they have the same length.

Similarly, in the case of angles, there is no degree measure attached to an
angle, although there is a notion of congruence of angles.

In the study of area, Euclid does not assign a number to a plane figure, in
contrast, for example, to high-school geometry, where one takes a triangle and
assigns to it the number %bh as its area, where b is the length of the base and h is
the length of the altitude. Instead, Euclid treats area by adding and subtracting
congruent figures.

For the material of Books I-1V of the Elements, we have also seen that Euclid
succeeds remarkably well in developing a beautiful theory of “pure” geometry
without numbers. Hilbert has reinforced this by providing a set of purely geo-
metric axioms on which to base Euclid's geometry in a way that will satisfy
modern criteria of rigor.

Just for contrast, you might look at some other twentieth-century proposals
for a set of axioms on which to base the study of geometry, where the real
numbers are presupposed from the beginning in the axioms. (See, for example,
Birkhoff (1932), or the School Mathematics Study Group postulates. Both can be
found as appendices to Cederberg (1989).)

For me this is unsatisfactory because it is not purely geometric, and the con-
cept of a real number is a rather sophisticated modern notion, dating from the
nineteenth-century, and is not in the elementary spirit of Euclid's geometry.
While Euclid was clearly aware of irrational numbers, and studies them ex-
tensively in Book X of the Elements, 1 find it difficult to support any argument
that Euclid had a concept of the totality of real numbers.

While Euclid was able to develop the material of Books I-1V without any no-
tion of number, it is a different matter when we come to the concept of similar
triangles as taught in high school. These are triangles whose sides are not equal,
but have some common ratio to each other. If that ratio is 2, it is not difficult to
develop a theory of triangles that are doubles of each other, as we did in Section
5. With a little more effort, one could extend this theory to triangles whose sides
are integer multiples of each other, or (with even a little more effort), rational
number multiples of each other. But if the ratio is not rational, as for example in
comparing an isosceles right triangle to its half formed by drawing an altitude,
how can one even express the notion of sides being proportional to each other
without having numbers? One would like to say that the ratios of the lengths of
the sides are equal, but this is difficult if one has no notion of length as a number
and does not have the ability to divide one such number by another.

Euclid handles this difficulty with the theory of propertion developed in Book
V of the Elements. The key concept is in Book V, Definition 5, where he says that
magnitudes (which could be line segments, areas, or whatever) are in the same
ratio (in symbols a : b = ¢ : d) if whenever equal integer multiples (say n times)
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be taken of a and ¢, and whenever equal integer multiples (say m times) be
taken of b and d, then na > mb or na = mb or na < mb if and only if nc > md, or
nc = md, or nc < md, respectively. If a, b, ¢, d are numbers, this is equivalent to
saying that a rational number m/n is less than, equal to, or greater than a/b if
and only if that same rational number is less than, equal to, or greater than ¢/d.
If furthermore a, b, ¢, d are real numbers, this is equivalent, as we know, to say-
ing that a/b and ¢/d are equal as real numbers, since the rational numbers are
dense in the set of real numbers. In fact, this is word for word the same notion
used by Dedekind in constructing the real numbers by his so-called Dedekind
cuts (cf. Dedekind (1872)).

Aha!, you may say, so Euclid did know about the real numbers, and wrote
their definition 2000 years before Dedekind! But here is the difference. Euclid
used this criterion only to distinguish hetween ratios that arose naturally in his
geometry, such as the ratios of line segments that might be obtained by ruler
and compass constructions, and that might be irrational. But I see no evidence
that he conceived of the existence of any other real numbers (such as e, for
example), whereas Dedekind could conceive of the totality of all Dedekind cuts
of rational numbers, and take this set to be a new mathematical object called the
set of real numbers. It is this process of creating a new mathematical object as a
set of all subsets of another set with certain properties that seems very modern
to me.

Even in the classical problem of the trisection of the angle it seems that the
emphasis was on finding a construction that would produce an angle equal to
one-third of a given angle, and there is no evidence that the ancients believed in
the existence of such an angle before it was constructed.

Note also that for Euclid’s theory of proportion to work, we implicitly need
Archimedes’ axiom. This is clear from Book V, Definition 4, which says that
magnitudes have a ratio to each other if each, when multiplied, is capable of
exceeding the other. Without Archimedes' axiom, some quantities would be in-
comparable. Also, one would fail to distinguish unequal quantities. For example,
if F'is a non-Archimedean ordered field with an infinite element ¢, then Euclid's
test would fail to distinguish between /2 and /2 + 1/t

Having developed the theory of proportion abstractly in Book V, Euclid pro-
ceeds to apply his theory to geometry in Book VI, and develops what we recog-
nize as the familiar theory of similar triangles. The key result here, which forms
the basis of the subsequent development, is (V1.2), which says that a line parallel
to the base of a triangle, if it cuts the sides, cuts them proportionately, and con-
versely. Euclid's proof is a tour de force, using the theory of area previously
developed in Book I to establish this result.

There are two reasons for us to seek an alternative development of the
theory of similar triangles: One is to free ourselves from dependence on Archi-
medes’ axiom, and the other is to avoid Euclid's use of the theory of area, which
we have not yet treated satisfactorily (cf. Chapter 5).
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So now, after this rather lengthy introduction, we come to the main point of
this section, which is to create an arithmetic of line segments. We will define
notions of addition and multiplication for line segments up to congruence, that is,
the sum or product of congruent segments will be congruent. Or if you prefer,
the operations + and - will be defined on the set P of equivalence classes of line
segments modulo congruence. We will show that these operations obey all the
usual rules of arithmetic for positive numbers. And then, by a natural construc-
tion that introduces an element 0 and negatives of line segments, we will con-
struct an ordered field whose positive elements are the congruence classes of
line segments. Here is where the concepts of modern abstract algebra play an
essential role, because instead of using some preexisting notion of number, such
as the rational numbers or the real numbers, we create a set that occurs natu-
rally in our geometry and give this set the structure of an abstract field.

Using this field we will then in the next section be able to define the notion
of length of a segment (as an element of this field) and to develop the theory of
similar triangles, where ratios are quotients of lengths in the field. Thus we will
replace Euclid's theory of proportion as developed in Book V by the use of alge-
braic relations in the field of segment arithmetic.

We will now define the arithmetic operations on congruence equivalence
classes of line segments, following the ideas of Hilbert (1971), with simplifica-
tions suggested by material in the supplements to that book, apparently due to
Enriques. We will work in a Hilbert plane satisfying the parallel axiom (P).

Definition

Given congruence equivalence classes

of line segments a,bh, we define their & b
sum as follows. Choose points A, B such
that the segment AB represents the A ® <
class a.

Then on the line AB choose a point C with A * B * C, such that the segment
BC represents the class b. Then we define a + b to be represented by the seg-
ment AC.

Proposition 19.1
In any Hilbert plane, addition of line segment classes has the following properties:

(1) a+ bis well-defined, i.e., different choices of A, B, C in the definition will give rise
to cCOngruent segments.

(2) a+b=Db+a, ie., the corresponding line segments are congruent.

(3) (a+b)+c=a+ (b+c).
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(4) Given any two classes a, b, one and only one of the following holds:

(i) a=b.

(ii) There is a class ¢ such that a+ ¢ = b.
(iii) There is a class d such that a = b + d.

Proof (1) If we choose a different rep-
resentative A'B’ of the class a, and lay
off ¢’ on the line A'B’ such that B'C’
represents b, then AC = A'C’ by axiom
(C3); cf. (8.2).

(2) Let AB represent a, and choose C
such that A * B * C and BC represents b,
as in the definition. Then AC represents
a+ b. Now take DE to represent b, and
lay off F such that D = E « F and EF rep-
resents a. Then DF represents b+ a.
But AB = FE and BC =~ ED, so AC = FD
by (C3). This shows thata + b = b + a.

(3) To get (a + b) + ¢ we first choose
AB e a, then find C such that A«B=*C
and BCeb, then find D such that
A#*C=D and CDec. Then AD repre-
sents (a + b) + c.

On the other hand, let EFeb and
choose G such that FGec. Then EG
represents b +¢. To get a+ (b+c¢) we
need to find a point H with A*B=H
and BH = EG. But BD = EG by (C3), so
H = D by the uniqueness part of (C1).
Therefore, (a +b) +c=a+ (b+c).

(4) Given two classes a,b on a ray
from a point A, lay off points B, C such
that ABea and ACeb. If B= C, then
a=b If A+B=C, then a+ [BC|=b.
If A*C=«B, then a= b+ [CB]. By (B3)
these are the only possibilities, and this
proves (4).

Az Y c’

Before we define multiplication, we need a standard unit segment. So choose
arbitrarily, and then fix once and for all, a segment class we call the unit seg-
ment, and denote it by 1. We also need the parallel axiom (P), even for the defi-

nition of the product (Exercise 19.1).
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Definition
Given two segment classes a,b, we C.

define their product ab as follows. First
make a right triangle ABC with ABe 1 et

and BC € a, where the right angle is at F
3 A [ B

B. Let o be the angle /. BAC. Now make

a new right triangle DEF with DEe b ab

and having the same angle « at D. Then
we define ab to be the class of side EF of
this new triangle.

Proposition 19.2
In any Hilbert plane with (P), multiplication of segment classes has the following
properties:

(1) ab is well-defined.

(2) a-1=a forall a.

(3) ab = ba for all a,b.

(4) a(bc) = (ab)c for all a, b, c.

(5) For any a, there is a unigue b such that ab = 1.
(6) a(b+c¢) = ab+ ac for all a,b,c.

Proof (1) The product is well-defined. If A’B'C’ is another right triangle with
sides 1,a, then it is congruent to ABC by (SAS). Hence we get a congruent angle
o. If D'E'F’ is another right triangle with angle « and side b, then it is congruent
to DEF by (ASA). So we get a congruent segment E'F'.

(2) To compute a - 1, we take the triangle DEF to have side b = 1 and angle «.
Then DEF = ABC by (ASA),soa-1 =a.

(3) Given a, b, first make a right tri-
angle ABC with sides 1,a. This deter-
mines the angle o = /. BAC. Now extend
CB on the other side of AB to D, so that
BD e b, and draw a line through D mak-
ing an angle « with BD, on the far side
of BD from A. Let this line meet AB ex-
tended to E. Then DBE is a right tri-
angle with side b and angle «, so the
segment BE represents ab by definition.

Now consider the four points ACDE,
We will use the method of cyclic quad-
rilaterals developed in Section 5. Be-
cause the angles / CAE and /. CDE are
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Plate VII. A page from La Géométrie of Descartes, showing how he multiplies two line
segments to get another, and how he finds the square root of a line segment.
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both equal to «, they satisfy the hypotheses of (5.8), so the points ACDE form
a cyclic quadrilateral. Applying (5.8) to the same points in a different order, it
follows that the angles /. DAE and /. DCE are equal; call this class . To compute
the product ba we first use the triangle ABD, obtaining the angle f, and then use
the triangle CBE, which has angle ff and side a. This shows that BE represents

the product ba. Thus ab = ba

(4) For the associative law, we pro- '
ceed as follows. Make right triangles
with 1, a to define the angle «, and with [
1, ¢ to define the angle y. Make a right
triangle ABC with angle o and side b to

determine ab.
Extend CB on the other side of AB to
meet a line from A making an angle y

with AB. Then BD represents cb. Now
make a line at D with angle « to meet
AB extended at E. Then BE will repre- A b

ol
sent a(ch). Y & (b
As in the previous proof, the angles
o at A and D show that ACDE is a cyclic
quadrilateral. Then by (5.8) again we
conclude that / BCE = y. It follows that
BE also represents the segment c(ab).
Thus a(ch) = c(ab). Then using the com-

mutative law already proved, we get

a(bc) bc.
(5) Given a, make a right triangle
with sides 1,a to define «, and let f§ be
the other acute angle in that triangle. L
Then make a right triangle with angle f§
and side 1 to determine a new segment
b. Since the other angle in this triangle

is o (1.32), this second triangle shows
that ab = 1.
(6) Given a, b, ¢, let « be determined

by the right triangle with sides 1,a. &

Make a right triangle ABC with side £
b and angle « to determine BC € ab. c ac
Choose D on the line AB such that
A#B=+D and BD € ¢. Draw CE parallel
to AB, and DEF perpendicular to AB.

Then / ECF = o, and CE € ¢, so EF rep- o
resents ac. A b B ¢ P
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Because BCDE is a rectangle, DE € ab. Now by definition of sum, AD repre-
sents b + ¢ and DF represents ab + ac. On the other hand, the triangle ADF has
side b + ¢ and angle «, so DF also represents a(b + ¢). Hence a(b + ¢) = ab + ac.

Remark 19.2.1

Let us examine carefully the hypotheses needed for the validity of these two
results, (19.1) and (19.2). The first, concerning addition of line segments, is valid
in any Hilbert plane (Exercise 8.1). On the other hand, even for the definition of
the product, we need (P), or its equivalent, Euclid’s fifth postulate, to guarantee
that the point F exists. For the proof of (19.2) you might feel more comfortable
assuming the hypotheses of a Euclidean plane, in which case we have justified
the needed results from Book III (12.4). But if you look closely, we do not need
the Euclidean axiom (E) on intersection of circles for (5.8): See Exercise 19.2. We
also need (1.32), which uses (P) but not (E). Thus these two results hold in a
Hilbert plane with (P). We do not need (E), nor did we ever use Archimedes’
axiom (A).

Proposition 19.3

Given a Hilbert plane satisfying (P), and a unit segment 1 having been chosen, there
is a unigue (up to isomorphism) ordered field F whose set of positive elements P is the
set of congruence equivalence classes of line segments with operations +, - defined
above.

Proof This is a consequence of the purely algebraic lemma that follows.

Lemma 19.4

Let P be a set, with two operations +, - defined on it that satisfy the properties listed in
(19.1) and (19.2). Then there is a unique ordered field F whose positive elements form
the set P.

Proof One is tempted to define F to be the set PU{0} U —P, for intuitively, this
is what is happening. F will consist of the original set P, plus a 0 element, plus
another set of “negative” elements that is in 1-to-1 correspondence with the set
of positive elements. However, 1 believe that we can obtain a cleaner proof by
imitating the definition of the quotient field of an integral domain using ordered
pairs, except that this time our ordered pairs will represent differences of ele-
ments of P.

So here is the formal construction. Let F be the set of equivalence classes
(a,b) of ordered pairs (think of (a,b) as being a — b) of elements of P, where

(a,b) ~(a',b") ifa+b' =a +b.
Define addition by
(a,b) + (c,d) = (a+c,b+d)
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and multiplication by
(a,b)(c,d) = (ac + bd, ad + bc).

We must verify that these operations are well-defined, i.e., if we replace an
ordered pair by an equivalent ordered pair, the result is equivalent (!). (The
symbol (!) means a trivial verification left to the reader. There will be lots of
these, and all will result by using properties of + and - in the set P.)

Then we let 0 denote the equivalence class of (a,a) for any a € P, and note
that 0 acts as an additive identity (!). Also note that addition is commutative (!)
and associative (!). For any pair (a, b) note that (b, a) acts as an additive inverse
(). Thus the set F together with the operation + is an abelian group.

Next verify that multiplication is associative (!), commutative (!), and dis-
tributive over addition (!). Let 1 be the class of (1 + a,a) for any a € P. Thus 1
acts as a multiplicative identity (!), and there exist multiplicative inverses (!).
Hence F together with +,- is a field.

We define a mapping ¢ : P — F by a € P goes to (a+ b, b) for any b e P. This
mapping is 1-to-1 onto its image (!), which we therefore identify with P. Also, ¢
preserves -+, - (1), so that P has already two of the three properties required for P
to be the set of positive elements of an ordered field. It remains to verity the tri-
chotomy, namely, for any x = (a,b) in F, eitherxe Porx =0or —xe P. [f a = b,
then x = 0. We will use property (4) of (19.1). If there exists a ¢ such that
a+c=Db, then x = (a,b) = (a,a +¢), and the negative of this element satisfies
—x = (a+c¢,a) e P. If on the other hand there is a d such that a = b+ d, then
x={a,b)=(b+d,b)eP.

This concludes the proof modulo a million tedious verifications (!) left to the
reader!

Remark 19.4.1
We will see in the next section (20.7) that F is necessarily Pythagorean.

Exercises

19.1 Explain where and how (P) is needed in the definition of the product.

19.2 Show that the result ( Proposition 5.8) about cyclic quadrilaterals holds in any Hilbert
plane with (P).

19.3 Supply the missing verifications in the proof of (Lemma 19.4).

19.4 If we start with the Cartesian plane over a field Fy, show that the field F of segment

arithmetic constructed in Proposition 19.3 is naturally isomorphic to the original

field Fy.
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19.5 Is Lemma 19.4 still true if we omit property (4) of Proposition 19.1, but keep all
the other properties of Proposition 19.1 and Proposition 19.27 Give a proof or
counterexample.

20 Similar Triangles

We continue to work in a Hilbert plane satisfying (P).

Now that we have defined the arithmetic of line segments and have con-
structed a field F whose positive elements correspond to congruence classes of
line segments, we can establish a theory of proportion and similar triangles. The
results are the same as Euclid's in Book VI, but our methods are different.

For any line segment AB, its congruence equivalence class a is an element of
the field F. We will call a the length of AB, to conform with the usual terminol-
ogy. If AB and CD are two segments with lengths a, b, we can speak of their ratio
as the quotient a/b € F. We say that four segments with lengths a, b, ¢, d are pro-
portional if a/b = c¢/d as elements of the field F.

Definition (VI, Definition 1)

Two triangles ABC and A'B'C’ are sini- I A b
lar if the three angles of one are respec-
tively equal to the three angles of the B

other, and the corresponding sides are
proportional, i.e.,

afa' =b/b' =c/c.

Proposition 20.1 (Sim AAA) (VI1.4)
If two triangles ABC and DEF have their three angles respectively equal, then the two
triangles are similar.

Proof Our definition of multiplication in the field of segment arithmetic was
based on a special case of the notion of similar triangles, namely, comparing
the legs of equal-angled right triangles. So we will prove this result, following
Hilbert, by reducing to this case.

In the first triangle, draw the angle bisectors of the three angles, and let
them meet at the point I (cf. Exercise 1.8 or (IV.4)). Recall from the proof of
(IV.4) that I is equidistant from the three sides of the triangle: If we drop per-
pendiculars from I to the three sides, we obtain three congruent segments h.
Also, in the course of the proof we obtained congruent triangles about each ver-
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tex: AFT = AEI etc. Thus we get congruent segments AE = AF, which we call x,
BD = BF = y, and CD = DE = z.

g8 % O 2 ¢

Make a similar construction in the second triangle A'B'C’, obtaining points
D' E'.F',I’ and segments x’, y', z’', h’.

Let « be one-half of the angle at A,
draw a right triangle with one leg equal
to 1, and let r be the other leg. Then by
the definition of segment multiplica-
tion, h = rx. In the second triangle, the r
angle at A’ is equal to the angle at A by
hypothesis, so one-half of it is also «, so
we find similarly that k" = rx’. Dividing {
one equation by the other, we find that
x/x' = h/h'.

In the same way, working from the other two vertices of the triangle, we
obtain y/y' = h/h' and z/z' = h/h'. 1If we let h/h" = k, then we can write these
results as

x = kx',
y=ky',
z=kz.

The sides of the original triangle are formed of sums of these. Thusa = y + z
and a’' = y' + z'. It follows from the distributive law that

a = ka',
and by the same reasoning also

b =kb'

c=kc'.

Then a/a’ = b/b" = ¢/c’, so the two triangles are similar.
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While this proof has an entirely different basis from Euclid's, the other
results on similar triangles in Book VI will now follow easily, but in a different

order.

Proposition 20.2 (V1.2)

In any triangle ABC, let B'C' be drawn
parallel to BC. Then the sides AB and AC
are proportional to AB' and AC'. Con-
versely, if the sides are divided by points
B’, D such that AB, AC are proportional to
AB' AD, then B'D is parallel to BC.

Proof Since B'C’ is parallel to BC, the
angles at B', G’ are equal to the angles at
B, C, respectively (1.29). Since the angle
at A is common, the triangles ABC and
AB'C' have their three angles equal,
and so they are similar (20.1). It follows
that the sides are proportional.

BJ’

8/

\C

L'

Conversely, suppose we are given B’, D such that AB, AC are proportional to
AB' AD. Draw B'C’ parallel to BC. Then also AB,AC are proportional to
AB' AC'. Since we are working in a field F, the fourth proportional to three
given quantities is uniquely determined. Hence AD =~ AC’. Since the points
D, C’' lie on the same ray from A, the points D, C’ are equal (axiom (C1)). Hence

B'D is parallel to BC.

Proposition 20.3 (Sim SSS) (VL5)

Suppose two triangles ABC and A'B'C' have their three sides respectively propor-
tional to each other. Then the two triangles are similar.

Proof Supposing the sides of the second
triangle to be larger, find a point D on
the segment B’A’ such that B'D = BA.
Then draw a line through D parallel to
A'C'. Tt follows (20.2) that the triangles
A'B'C' and DB'E are similar, and in
particular, their sides are proportional.
But the sides of ABC are also propor-
tional to the sides of A’B’C’, so it follows
(from field arithmetic) that the sides of
ABC are proportional to the sides of
DE'E.

[31%
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On the other hand, B'D was chosen congruent to BA. So the proportionality
factor is 1, and it follows that all three sides of ABC are congruent to all three
sides of DB'E. Then by the congruence criterion (SSS) = (1.8), the triangle ABC
is congruent to DB'E. In particular, the three angles of ABC are equal to the
three angles of DB'E, which in turn are equal to the three angles of A'B'C’, since
the latter two are similar. Thus we have proved that the angles of ABC are equal
to the angles of A’B'C’, and so the two triangles are similar.

Proposition 20.4 (Sim SAS) (V1.6)

Suppose that two triangles ABC and A'B'C’ have the angles at A and A" equal, and
the two sides AB, AC are proportional to the two sides A'B', A'C’. Then the two tri-
angles are similar.

Proof (Exercise 20.1).

Theorem 20.5
In a Hilbert plane with (P), the results of Euclid's theory of similar triangles (V1.2)-
(VI.13) all hold.

Proof The propositions (V1.2)-(V1.6) appear as results in this section, or Exer-
cises 20.1, 20.2. Also, (VL.8) is covered in the proof of (20.6) below. The remain-
ing results follow easily, replacing Euclid's references to Book V hy algebraic
reasoning in the field of segment arithmetic.

Remark 20.5.1

Proposition (VI.1) and most of the latter part of Book VI, namely Propositions
(VI.14)-(VL.31), deal with the connection between proportionality of figures
and their area, so we postpone discussion of these until Chapter 5 (Exercise
23.7).

Next, using our segment arithmetic and the theory of similar triangles, we
can prove some analogues of theorems that Euclid stated in terms of area, but
that we will state as equations in the field F.

Proposition 20.6

If ABC is a right triangle with legs a, b and hypotenuse c, then
a’ +b*=c?

in the field F of segment arithmetic.

Proof This, of course, is another version of the Pythagorean theorem (1.47),
which Euclid proved in terms of the areas of the squares built on the sides of the
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triangle. The present statement in terms of segment arithmetic is of a totally
different nature, and neither implies, nor is implied by, the previous statement,
until we have made some connection between area and segment arithmetic (cf.
Chapter 5).

To prove the current statement, drop
a perpendicular CD from the vertex with
the right angle to the hypotenuse. Then
we find that the original triangle ABC
has the same angles as the two new tri-
angles ACD and CBD. Hence all three
triangles are similar, by (20.1). (This
statement is (VL.8) in Euclid.) Then cor-
responding sides are proportional, and
we obtain ) c

2=
olR

using CBD similar to ABC, and we obtain

c—x b
b C

using ACD similar to ABC. Cross multiplying, we obtain
cx = a?,
¢* —cx = b,
from which by substituting we obtain

a?+ p? = ¢

Corollary 20.7
In a Hilbert plane satisfying (P), the field of segment arithmetic (19.3) is Pythagorean.

Proof We must show for any a € F that

V14 a2eF. If a=0, this is trivial; if a

is negative, we can replace a by —a, so

we may assume that a is positive. Then a“
a is the length of a certain segment. If iy
we construct a right triangle with legs 1
and a, then by (20.6) the hypotenuse
will be a segment whose class in F is |

V1 + a?. Thus F is Pythragorean.
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Proposition 20.8 (cf. (111.35))
If two chords of a circle meet, cutting each
other in segments of lengths a, b, ¢, d, then A

ab = cd €
in the field F of segment arithmetic.
[
Proof Draw the lines AB and CD. Then
by (I11.21) the angles at B and D are
equal, and the angles at A and C are

b
equal. Hence the triangles ABE and
CDE have the same angles, so are simi-
lar (20.1). It follows that corresponding
sides are proportional: a/c = d/b. Cross
multiplying, we obtain ab = cd. B
C

Proposition 20.9 (cf. (I11.36)) A
Let A be a point outside a circle, let the line

AB be tangent to the civcle at B, and let the

line ACD cut the circle at C and D. Then,

in the field of segment arithmetic,

D

(AB)* = (AC) - (AD).

Proof Draw the lines BC and BD. Then / ABC = / ADB by (111.32). Since the
angle at A is common, the triangles ABC and ADB have two (and hence three)
angles equal, so they are similar (20.1). It follows that corresponding sides are
proportional, namely,

AB _AD

AC  AB’
Cross multiplying gives

(AB)* = (AC) - (AD).

As applications of similar triangles, we give some other well-known theo-
rems here and in the exercises.

Proposition 20.10 (Menelaus's theorem)
Let ABC be any triangle, and let a line 1 cut the sides of the triangle (extended if nec-
essary) in points D, E, F. Then

AD BF CE

BD CF AE
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Proof Draw a line through A parallel to
BC, and let it meet [ at G. Then the tri-
angle ADG is similar to BDF, and the
triangle AEG is similar to CEF. From
this we obtain

AD BD

BD AE _ CE
AG  BF

AG  CF’

and

Eliminating AG from these equations
and rearranging gives the result.

Exercises

These exercises take place in a Hilbert plane

20.1 Prove (Sim SAS) (Proposition 20.4).

20.2 (VL3) Let ABC be any triangle, and let
AD be the angle bisector at A. Prove
that AB and AC are proportional to BD
and DC.

20.3 Let A be a point outside a circle, and
draw any two lines through A cutting
the circle at B, C and D, E. Then show
that

(AB) - (AC) = (AD) - (AE).

The product (AB) - (AC), which thus
depends only on A, is called the power
of the point A with respect to the cir-
cle. If A is inside the circle, we use
signed lengths, so that the power of A
will be positive if A is outside the
circle, and negative if' A is inside the
circle.

181

with (P).
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20.4 If two circles intersect in two points,
the line through those points is called A
the radical axis of the two circles. D
Show that the radical axis is equal to 8
the set of those points A in the plane
tor which the power of A with respect
to the first circle is equal to the power
of A with respect to the second circle.

(Even when the two circles do not
intersect, this latter property defines a
straight line that is taken to be the c
radical axis in that case.)

o

20.5 If three circles each meet the other
two in two points, show that the three
radical axes of the circles, taken two
at a time, meet in a single point. (We
will see later (Exercise 39.20) that this
result also holds in the Poincaré model
of non-Euclidean geometry. So we can
ask, is it true in any Hilbert plane?)

20.6 In a Hilbert plane with (P), given two
circles by their centers and one point
each, but without being given their
intersection points, show that the fol-
lowing construction {which can be
done with Hilbert's tools) gives the
radical axis of the two circles.

Let the two circles be defined by
their centers Op,0; and their points
Ay, A5, Let B be the midpoint of A;A;.
Drop a perpendicular from A; to OB,
and a perpendicular from A; to O3B,
and let these two lines meet at P. ~
Then the perpendicular from P to
0103 is the required radical axis of the
two circles.

20.7 (Ceva's theorem). Let ABC be any triangle, and let P be any point inside the trian-
gle. Draw lines from the vertices through P meeting the opposite sides at D, E, I
Then show that

AD BF CE _
BD CF AE
Hint: Imitate the proof of Proposition 20.10.
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20.8

20.9

20.10

(Desargues's theorem). Let ABC and
A'B'C' be two triangles. Assume that
AA", BB',CC" all pass through a single
point O (we can say that ABC and
A'B'C' are perspective from ). As-
sume further that AB is parallel to
A'B', and BC is parallel to B'C'. Prove
that AC is parallel to A'C'. (Compare
Exercise 14.2, where the same result
is proved in a different situation.)

Prove the field analogue of (11.11), as
follows. Let AB be a given line seg-
ment. Construct AC = AB and per-
pendicular to it. Let D be the midpoint
of AC. Then find E on AC such that
DE=DB. Find F on AB such that
AE = AF. Prove that

(AF)* = (AB)(BF)

in the field of segment arithmetic.
Hint: Use Proposition 20.6. We say
that AB has been divided in extreme
and mean ratio.

Give a new proof of (IV.10) as follows.
Let the segment AB be divided in ex-
treme and mean ratio as in Exercise
20.9 above: (AF)” = (AB) - (BF). Con-
struct a triangle ABC such that AC =
AB and BC = AF. Prove that the base
angles of the isosceles triangle ABC are
each equal to twice the vertex angle at
A. Hint: Use (Sim SAS) (Proposition
20.4) to obtain similar triangles.

183
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20.11

20.12

20.13

20.14

20.15

4. Segment Arithmetic

Let OA and OB be two perpendicular
radii of a circle. Let C be the midpoint
of OB. Let CD be the angle bisector of
/[ ACO. Let DE be perpendicular to
OA. Then prove that AE is a side of
the regular pentagon inscribed in the
circle. Hint: Use Exercise 20.2.

How many steps would it take to
construct the pentagon by this method
(given the circle and its center)?

8

Prove that in a Hilbert plane with (P) (without assuming (E)), there exists an equi-
lateral triangle with given side AB. Hint: First show that the field I of segment

arithmetic contains an element %ﬁ

Given a triangle ABC with acute
angles at B and C, make a ruler and
compass construction for a square
with one edge along the side BC, and
the other two vertices on the sides
AB,AC. We call this an inscribed
sguare (par = 17).

A

Match wits with the great nineteenth-century geometer Jakob Steiner: This is one
of his many theorems published without any indication of proof (Werke (1881)
vol. I, p. 128). Suppose you are given four lines in the plane, no two parallel, and
no three concurrent. Taken three at a time, they make four triangles. Show that the
orthocenters (intersection of the altitudes) of these four triangles are collinear.

(Trigonometry). In a Hilbert plane
with (P), suppose that you are given a
right triangle ABC with sides a,b,c
and angle « at A. Define
, a a
sing=—, cosg =—, tano = —
c ¢ b
as elements of the field of segment
arithmetic F.

A

2

A

RS

(a) Show that the functions sino, cosa, tan« depend only on the angle =, and not

on the particular triangle chosen.
(b) Prove the identity

sin? o + cos

Iy =1.
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20.16 (Law of cosines). Let ABC be any tri-
angle, with sides a,b, e, and angle « at

A. Using the cosine function defined A
in Exercise 20.15, prove the law of
cosines oA

a’ = bh* +c¢? — 2bccosa.

Hint: Draw an altitude to make two =9
right triangles, and use Proposition (3 o C
20.6. How does this result relate to

Euclid (11.13)7

20.17 (Law of sines). With the same notation as in Exercise 20.16, prove the law of
sines:

sing  sinfi  siny

a b c

20.18 Let ABC be a triangle, and let D, E.F
be points on the sides such that
AF,BE, and CD are concurrent. Show
that DE is parallel to BC if and only
it F is the midpoint of BC. Hint: Use D €
Ceva's theorem (Exercise 20.7).

3 C
F

20.19 (a) Given a line segment BC and its midpoint F, construct with ruler alone a line
through a given point D parallel to the line BC (par = 6).

(b) Given a segment BC and given a line m parallel to the line BC and distinct from
it, construct with ruler alone the midpoint of BC (par = 5).

20.20 Verify the following construction due
to Hilbert. Given a line [, to construct
a line perpendicular to [ (at an un-
specified point) using only ruler and
dividers (cf. Section 10). Take any two
points A, B on [ and any two rays m, n
emanating from A. Lay off segments
AC, AD, AE equal to AB. Let BD meet
CE at F let CD meet BE at G. Then
the line FG is perpendicular to [ (10
steps).
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20.21 In a Hilbert plane with (P), given an
angle 2, given a ray r, and given a side

of r, construct with ruler and dividers P ’
only an angle equal to « on the given L7
side of the ray r (par = 30). Hint: Em- of, — Y

bed « in a right triangle and transport
its legs, using Exercises 20.19, 20.20.

It follows that any construction possible with Hilbert's tools (Section 10} is
actually possible using only the ruler and the dividers: The present construction
makes the transporter of angles superfluous.

21 Introduction of Coordinates

In this section we will complete a logical circle by showing that if' Il is an
abstract geometry satisfying the axioms of a Hilbert plane plus (P) and if F is the
field of segment arithmetic for Il (19.3), then Il is isomorphic to the Cartesian
plane over the field F.

Let me explain this in greater detail. We started our study of geometry trom
two different perspectives. On the one hand we considered a purely geometric
development, where points, lines, congruence, etc., were undefined notions
subject to certain axioms, from which we prove theorems. This is Euclid's
approach, improved by Hilbert, who gave us a set of axioms including Euclid's
unstated assumptions, so that we could develop his geometry on a rigorous basis.

On the other hand, we constructed examples, or models, of this abstract ge-
ometry, based on the logical foundations of modern algebra, by starting with an
ordered field F (for example the real numbers), and making a geometry whose
points are ordered pairs of elements of the field F. This is the Cartesian
approach (cf. Section 13). In this model we defined lines and congruence, using
linear equations and a distance function, and then proved, by algebraic meth-
ods, that the axioms of abstract geometry are true.

For any particular field F, it may happen that certain things are true that do
not hold in every geometry: For the plane F? is just one of many possible models
of an abstract geometry. For example, if F = IR, then Dedekind's axiom (D)
holds, but it does not hold in the field of constructible numbers (16.4).

Perhaps more interesting is that we can prove certain results in the geome-
try over any field F, though we do not know how to prove the corresponding
statement in abstract geometry. For example, over any field F, the line-circle
intersection property (LCI) is equivalent to the circle-circle intersection prop-
erty (E), because we have shown that both of these are equivalent to the Eucli-
dean condition on the field F, (16.2). We do not know any purely geometric
proof of this equivalence.

Of course, it might be that the geometries constructed over fields were only
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some possible geometries, and that there were other abstract geometries, not
corresponding to any field, with properties different from the geometries over
fields. If we drop the parallel axiom, this is indeed the case, as we will see with
the non-Euclidean geometries (Chapter 7). However, we will show that any
abstract geometry with (P) is isomorphic to a geometry over a field.

To understand this, we need to be clear what we mean by an isemorphism of
geometries. The Greek roots iso + morph mean “the same form." Intuitively,
both geometries behave the same way. Their outer structures may be different,
but there is no way that they can be distinguished internally.

The formal definition of isomorphism of geometries is as follows.

Definition

Let Il and [1’ be two Hilbert planes. An isomorphism between Il and 11’ is a one-
to-one mapping ¢ : [1 — I1’ of 11 onto I1’ that is compatible with the undefined
notions. This means:

(1) A subset L < Il is a line if and only if ¢(L) = 11" is a line.

(2) Three points A, B,C e Il satisfy the betweenness property A * B« C if and
only if p(A) + @(B) = ¢(C) in 11"

(3) Given four points A, B, C, D € 11, the line segments AB and CD are congruent
if and only if the line segments ¢(A)@(B) and ¢(C)p(D) are congruent in I1’.

(4) If « is an angle formed by the rays AB and AC in 1, we denote by ¢(x) the
angle formed by the rays ¢(A)p(B) and ¢(A)p(C) in 11", If & and f are two
angles in 11, then o and f are congruent if and only if ¢(x) and ¢(f) are con-
egruent in 117,

Theorem 21.1 (Introduction of coordinates)

Let 11 be a Hilbert plane satisfying the parallel axiom (P). Let F be the ovdered field of
segment arithmetic in 11 (19.3). Then F is Pythagorean (20.7), and 11 is isomorphic to
the Cartesian plane F? over the field F.

Proof We start by fixing two perpen-

dicular lines in the plane Il, which we ‘}

call the x-axis and the y-axis. We call

their intersection point O the origin. On B P

each axis choose a point 1, and 1, such

that the segments O1, and O1l, both l:

represent 1 in the field F. These then

define the positive rays on the x-axis and

the y-axis. o
Now for any point P in the plane, we

drop perpendicular PA to the x-axis and

PB to the y-axis. Let the segment OA

represent a€ F and let OB represent

beF.
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Plate VIIL. Figures from Gregory's Treatise of Practical Geometry (1751).
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Now we can define a mapping ¢ : Il — F? by ¢(P) = (£a, £b), where we
choose the + sign if A (resp. B) is on the positive x-axis (resp. y-axis) and the —
sign if not. Clearly, this construction gives a bijective correspondence hetween
the set of points of Il and the set of ordered pairs of the field F; so ¢ is 1-to-1 and
onto.

We must verify that ¢ is compatible with the notions of line, betweenness,
congruence of segments, and congruence of angles. And remember that in I1
these are undefined notions, whose properties are known only through the axi-
oms and propositions of the geometry, while in F? they were defined in terms of
algebraic conditions (Chapter 3).

Step 1 Let ! be a line in I1. (For simplicity we will consider a general line, and
let the reader check the special cases of horizontal and vertical lines(!).) Let !
meet the x-axis at A. Measure oft AB € 1, let BC be a perpendicular, and let me F
be the class of BC. We call m the slope of the line.

Let | meet the y-axis at D, and let b € F represent that point (i.e., b = OD if D
is on the positive y-axis; otherwise, b = —0D).

Now consider an arbitrary point P = (x, y) in the plane. Make a triangle DPE
using horizontal and vertical lines. Then DE = x and PE = y — b (in the case
shown; otherwise, adjust signs + as needed (!)). This point P will lie on the line !
if and only if the angle PDE = «. Because of the definition of our segment arith-
metic, this condition is equivalent to saying y — b = mx. In other words, P =
(x,y) lies on the line [ if and only if y = mx + b. Since lines in F? were defined
by linear equations, this establishes the first property of an isomorphism: L < 1
is a line < ¢(L) < 11’ is a line.

I} ‘?’J {x9)

g.-b
c E

Step 2 Let A, B, C be three collinear points in 11 (which by Step 1 will guarantee
that their images in 11’ are collinear). Let A’, B’, C" be their projections on the x-
axis (and again for simplicity we will treat the special case that A, B, C are in the
first quadrant, leaving other cases to the reader (!)).
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Since the lines AA’, BB', CC' are par-
allel, A and C will be on opposite sides
of the line BB’ if and only if A’ and C’ are
on opposite sides of the line BB" (7.2),
so A*Bx*C if and only if A" =B +C’'.
Let the segments OA’, OB, OC' repre-
sent a, b.c, € F. Then A’ = B' = C" means
that either the segments are related
OA' < OB' < 0OC' or vice versa OC' <
OB’ < OA’. This is equivalent to saying
a<b<corc<b<a, by the way we
defined inequality in the field F of seg-
ment arithmetic. And this, in turn, is
equivalent to saying @(A)=* @(B) * ¢(C)
because of the definition of between-
ness in F* (Section 15).

Step 3 Let A, B be two points in I, and
let the segment AB represent de F. On
the other hand, let ¢(A) = (a1,42) and
@(B) = (b1,b3). Then if we draw the
right triangle ABC with legs parallel to
the axes, we find that AC = b, — a; and
BC = b; — a; by construction. We use
the field version of the Pythagorean
theorem (20.6) to conclude that

> = (by — ) + (b, — ay)?
in F.

b]‘&'

Now let A'B’ be another segment, with length d' € F. Then similarly, if

¢(A') = (a],a}) and ¢(B') = (b].D}), we have

a” = (b} — al)’ + (¥ - a).

Now AB = A'B’ if and only if d = d’, because F was constructed from the set
P of congruence equivalence classes of line segments. On the other hand, d = d'
if and only if d? = d", because both are positive elements of F. But the equations
above show that d* and d” are equal to the “distance squared” function that we
used to define congruence of segments in F? (Section 16). Thus AB = A'B’ if and

only if p(A)p(B) = p(A")p(B).
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Step 4 We show that two angles o, ' in Il are congruent if and only if ¢(«) and
@(2') are congruent in [1'. For economy of exposition, we give an indirect proof,
though a direct proof is also possible (see Exercise 21.2).

Suppose we are given angles o and
o' in 1. Let the vertices be A and A’,
and choose any two points B,C on the
two rays of «. Then find B’,C" on the
rays of ' such that AB= A'B' and
AC = A'C'. Draw the lines BC and B'C’
to make triangles.

If « =o', then by (SAS) it follows
that the triangles ABC and A'B'C’ are
congruent, and in particular, BC = B'C’.
Conversely, if BC = B'C’, then by (SSS)
the two triangles are congruent, and so
o= o Hence a = o' & BC = B'C.

Apply ¢ to the six points A,B,C, A", B, C". Then ¢(A)p(B) = ¢(A')p(B") and
p(A)p(C) = p(A")p(C') by Step 3. Furthermore, we have shown that the geome-
try F? satisfies Hilbert's axioms (Section 17), and in particular, (SAS) and (SSS)
hold also in F?. So by the same argument in F? we see that p(a) = ¢(2') if and
only if ¢(B)p(C) = ¢(B")p(C").

Combining this result with Step 3 for the segments BC and B'C’, we see that
o =o' < BC=B'C' < ¢(B)p(C) = p(B)g(C") < p(a) = (o).

Corollary 21.2
In any Hilbert plane 11 satisfying (P), (LCI) is equivalent to (E), and both are equiv-
alent to saying that the field F of segment arithmetic is Euclidean.

Proof Indeed, we have shown that this is true over a field (16.2), so by the
theorem it is true in I also.

Corollary 21.3
A Hilbert plane 11 satisfying (P) and (D) is isomorphic to the real Cartesian plane.

Proof By (21.1), Il is isomorphic to the Cartesian plane over a Pythagorean
ordered field F. By (15.4), the plane Il satisfies (D) if and only if the field F sat-
isfies (D). And then by (15.5), F = R.
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Exercises

21.1

21.2

214

21.5

Given two adjacent nonoverlapping
angles «,f at a point A, use the dia-
gram shown, plus similar triangles
and Proposition 20.6, to show that
tano + tan

tan(a + fi) = fanzx+tanf
1 —tanotanf

in F (cf. Exercise 20.15 for the defini-
tion of tan ).

AL 7

Use Exercise 21.1 above to give a direct proof of step (4) of Theorem 21.1, namely,
that two angles o, o' in 1l are congruent if and only if ¢(a) and p(«') are congruent
in F?, using the definition of congruence we gave for angles in F* (Section 16).

Give another proof that (LCI) is equivalent to (E) in a Hilbert plane with (P) by

using the construction of Exercise 20.6.

In this and the following exercises we
consider, in a Hilbert plane with (P),
constructions with a ruler alone, but
we are given a fixed circle I' and its
center O, and we are allowed to inter-
sect lines with this circle. The key ob-
servation is that any line through O
cuts off a diameter, with O as its mid-
point, and this allows us to draw par-
allel lines { Exercise 20.19).

Given I' and O, construct with
ruler alone the midpoint of a given
segment (par = 15). The diagram is
given as a hint of one possible con-
struction.

Given I' and O, construct with ruler
alone a line parallel to a given line
[ and passing through a given point
P (par = 16). Hint: First construct a
bisected segment on [, as shown.
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21.6 Given I' and O, and given a segment

OA and a ray r originating at O, con- 0 v
struct with ruler alone a point B on r >
with OA =~ OB (par = 17). b

21.7 Given I' and O, and given a point P
and a line [, construct a perpendicular
to [ through P (par = 33).

21.8 Given I' and O, and given a circle A defined by its center A and a point B, and
given a line I, construct with ruler alone an intersection point of A and [ (par = 54).
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21.9 Now prove the theorem of Poncelet-Steiner, that any ruler and compass construc-
tion can be accomplished with ruler alone if we are given a single circle I' and its
center O. Hint: Use the construction of Exercise 20.6 to reduce the problem of
intersecting two circles to intersecting a circle and a line. Or else proceed algebrai-
cally and show first that the operations +, —,-, +, J/ can be carried out on line
segments; then use Theorem 13.2.

21.10 (Extra credit) Given a circle and its center, construct with ruler alone an inscribed
regular pentagon (par = about 50).

But when the sceptre devolved to Almamon,
the seventh of the Abbassides, he completed the
designs of his grandfather, and invited the
Muses from their ancient seats. His ambassadors
at Constantinople, his agents in Armenia, Syria,
and Egypt, collected the volumes of Grecian
science: at his command they were translated
by the most skillful interpreters into the Arabic
language: his subjects were exhorted assidu-
ously to peruse these instructive writings; and
the successor of Mahomet assisted with pleasure
and modesty at the assemblies and disputations
of the learned . ..

The sages of Greece were translated and
illustrated in the Arabic language, and some
treatises, now lost in the original, have been
recovered in the version of the East, which pos-
sessed and studied the writings of Aristotle and
Plato, of Euclid and Apollonius, of Ptolemy,
Hippocrates, and Galen.

— from The History of the Decline and Fall
of the Roman Empire

by Edward Gibbon, vol V, ch 52
Bigelow, NY (1845)
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CHAPTER

ooking at Euclid's theory of area in Books I-1V, Hilbert
saw how to give it a solid logical foundation. We define
the notion of equal content by saying that two figures
have equal content if we can transform one figure into
the other by adding and subtracting congruent tri-
angles (Section 22). We can prove all the properties of
area that Euclid uses, except that “the whole is greater
than the part.” This is established only when we relate

: ol the geometrical notion of equal content to the notion
of a measure of area function (Section 23).

In an Archimedean Euclidean plane, we prove the theorem of Bolyai
and Gerwien, that figures of equal area are equivalent by dissection (Section
24). We also investigate the practical problem of dissecting one figure into
another.

We briefly discuss the classical problem of squaring the circle (Section 25)
and its influence.

In comparing the volumes of three-dimensional figures, Euclid uses a limit-
ing process, the “method of exhaustion” (Section 26). We give Dehn'’s solution of

Hilbert's third problem, that solid figures of equal volume are not necessarily
equivalent by dissection (Section 27), thus vindicating Euclid’s use of an infinite
limiting process in the study of volume.

195
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22 Area in Euclid’s Geometry

Starting with (1.35), Euclid introduces a new notion of equality between figures,
which corresponds to what we would call “equal area.” The area we are familiar
with from high school attaches a number to each figure. So the area of a rectan-
gle with sides a and b is the number ab; the area of a triangle with base b and
height h is %bh. In Euclid’s geometry, there are no numbers, so we cannot
explain his concept of area this way.

Euclid does not define this new notion of equality, but we can infer from his
proofs that he considers it another undefined notion, like congruence of seg-
ments or angles, that satisfies certain properties similar to the common notions.
In particular, he assumes that:

Congruent figures are “equal.”

Sums of “equal” figures are “equal.”

Differences of “equal’ figures are “equal.”
Halves of “equal” figures are “equal.”

The whole is greater than the part.

If squares are “equal,” then their sides are equal.

U R

Properties 1, 2, and 3 are used in the proof of (1.35). Property 4 appears in
the proof of (1.37), and property 5 appears in the proof of (1.39). Property 6,
which is actually a consequence of 5, is used in the proof of (1.48).

We could accept this notion of “equality” between figures as another un-
defined notion, with these properties as additional axioms. However, one is
reluctant to encumber the foundations of geometry with unnecessary undefined
notions and axioms. So instead, following Hilbert, we will show that one can
define a suitable notion of "equal area" and prove its properties, thus providing
a new foundation for the theory of area. To avoid overuse of the word “equal,”
we introduce a new terminology and will say that certain figures have “equal
content."”

To begin with, let us be precise about our terminology. We presuppose the
axioms of a Hilbert plane. When we speak of a triangle ABC in this chapter, we
mean that subset of the plane consisting of the three line segments AB, AC, BC,
the sides of the triangle, plus all the points in the interior of the triangle.

Recall (Section 7) that the interior of a triangle ABC is the set of points that
are on the same side of the line AB as C, on the same side of AC as B, and on the
same side of BC as A. Two triangles are nonoverlapping if they have no interior
points in common. They may have common vertices or parts of edges.

Definition

A rectilineal figure (or figure for short) is a subset of the plane that can be ex-
pressed as a finite nonoverlapping union of triangles. A point D is in the interior
of a figure P if there is a triangle ABC entirely contained in P such that D is in
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the interior of the triangle ABC. Two figures are nonoverlapping if they have no
interior points in common. Note that our definition of a figure includes its edges
and all its interior points.

Proposition 22.1

The intersection of any two figures is a figure. The union of any two figures is a
figure. The complement of one figure inside another figure (plus the line seg-
ments that form its sides) is a figure. In particular, any finite union of triangles is a
flgure.

Proof The basic idea is to deal with one

triangle at a time. For example, if a tri- .ﬂ A

angle ABC is cut by a line [, then that

portion of the triangle that lies on one D

side of the line is a figure. One side BDE

in this example is a triangle. The other

side is a union of two triangles, after we L C
draw the line DC. We leave details to E\

the reader (Exercises 22.1, 22.2, 22.3).

Definition
Two figures P,P’ are equidecomposable if it is possible to write them as non-
overlapping unions of triangles

P=TU---UT,,
P =T/U---UT],
where for each 1, the triangle T, is congruent to the triangle T/.

Two figures P, P’ have equal content if there are other figures Q, Q' such that:

(1) P and Q are nonoverlapping.

(2) P' and Q' are nonoverlapping.

(3) Q and Q' are equidecomposable.

(4) PUQand P'U Q' are equidecomposable.
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Example 22.1.1

It P is the union of two congruent
squares in a Euclidean plane, and P' is a
square built on the diagonal of one of
the squares of P, then P and P' are equi-
decomposable. Indeed, we cut P and P’
into four congruent triangles each, as
shown in the diagram.

Example 22.1.2
In a Euclidean plane, let ABCD and
CDEF be two parallelograms on the
same base CD and lying in the same
parallels. The Euclid’'s proof of (1.35)
shows that ABCD and CDEF have equal
content.

Indeed, if we let P= ABCD and
P' = CDEF, take Q = Q' = triangle BGE.
Then P+ Q and P’ + Q' are the unions
of the congruent triangles ACE and BDF
and the equal triangles CDG and CDG.

Example 22.1.3

If two figures P and P’ are equidecom-
posable, then they have equal content,
but the converse is not necessarily true.
For example, consider the Cartesian
plane over a non-Archimedean field F
(Section 18). Let t be an infinite element
of the field F. Consider the unit square
ABCD and the parallelogram with base
CD and top side EF, where E = (t,1)
and F= (t+1,1).

B E F
/ ;

1 4
] + £+

Then according to (1.35), ABCD and CDEF have equal content. However,
they are not equidecomposable. Indeed, any triangle contained in the unit
square has sides of length less than or equal to 2. Any finite number of
these sides, placed end to end, still has finite length in the field F. But the side
CE of the parallelogram has length /241 > t, which is infinite. Thus no
finite number of triangles contained in ABCD can ever fill up the parallelogram

CDEF.
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Remark 22.1.4

This example suggests the following question: If we assume Archimedes’ axiom
(A) in addition, are the notions of equidecomposable and equal content equiva-
lent? We will see that the answer is yes in any Hilbert plane with (P) and (A),
by using a measure of area function with values in the field of segment arith-
metic (24.7.3). I do not know any purely geometric proof of this fact. In the non-
Euclidean case, we obtain the same result using the defect of a triangle as a
measure of area function (36.7.1).

Proposition 22.2
In a Hilbert plane, the relation of two figures being equidecomposable is an equivalence
relation. Nonoverlapping unions of equidecomposable figures are equidecomposable.

Proof The relation is obviously reflexive (“P is equidecomposable with P’) and
symmetric (“if P and P’ are equidecomposable, then P’ and P are equidecom-
posable”). The nontrivial part is transitivity. So suppose that P and P’ are equi-
decomposable, and P' and P” are equidecomposable. Let

P=TU---UT,,
Pl=1/U---UT],
where T; and T/ are congruent triangles, for each i. Also let

Pr=8UuU---us

mi

P"=8'U---Us,

m?

where S; and Sj-” are congruent triangles, for each j. We must show that P and P”
are equidecomposable.

To do this, we will refine the decompositions of P and P” in order to express
them both as unions of congruent triangles. For each i, j consider the inter-
section T/ N S; in P’. It may be empty, or may consist of points or line segments
only. We ignore those. When the intersection has a nonempty interior, it will be
a figure (Exercise 22.1) that can be written as a union of triangles

l
' [ !
TN = A-L=J1 Ugi-

Now let @, : Ty — T! be a rigid motion (Exercise 17.10) taking the triangle T,
to the congruent triangle T]. We use ¢, to transport the triangles Ut;-k to new tri-
angles Uy, = w.‘l(U;;.k) contained in T;. Then

i

Ti = | Uik,
ik

and each Uy is congruent to U;.k,
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Similarly, for each j, let ; be a rigid motion taking S8/ to the congruent trian-
gle 7. Let Ujj = ¥,(Uj;). Then

"o "
§ = Uﬁ Ul

and each U} is congruent to Uy,
By construction, the Uy and the U, are nonoverlapping triangles, and we

can write
P= Ui.j.k‘Uﬂ.k’
"o "
P = Ui.j.k‘Uijk'-‘

where Uy is congruent to Uj for each i, j,k. Thus P and P" are equidecompos-
able.

If P and P’ are equidecomposable, and Q and Q' are equidecomposable, and
if P does not overlap Q and P’ does not overlap Q’, then it is obvious that PUQ
and P'U Q' are equidecomposable.

Proposition 22.3
In a Hilbert plane, the relation of two figures having equal content has the following
properties:

(a) Equal content is an equivalence velation.

(b) Equidecomposable figures have equal content.

(¢) Nonoverlapping unions of figures of equal content have equal content.

(d) IfQ = Pand Q' = P/, and if Q and Q' have equal content, and P and P’ have
equal content, then P — Q and P' — Q' have equal content.

Lemma 22.4

Suppose P and P' are equidecomposable figures, and suppose P is expressed as a
nonoverlapping union of subfigures P = Py U P,. Then there are subfigures Py, P; of
P’ such that P' is the nonoverlapping union of P| and P, and P; and P! are equi-
decomposable for i = 1, 2.

Proof Suppose

P=TU---UT,,

Pr=TiU..-UT],
where T; and T! are congruent triangles for each i. As in the proof of (22.2) we
will refine decompositions appropriately.

For each i, consider the intersections T; N P; and T;MN P;. We can write each
as unions of triangles (22.1)

T,NP, = U}. Sin,
T:NPy = |, S
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Use rigid motions ¢, : T; — T/ to transport these triangles and define

:':r'I&' = (D[(Sﬂ'k)
for each 1, j, k. Let

P = {JSj,

Py = JS},-

Then P{, P} satisty the requirements of the lemma.

Proof of 22.3 (a) The relation of equal content is obviously reflexive and sym-
metric. The nontrivial part is to show that it is transitive. So suppose figures P
and P’ have equal content, and P’ and P" have equal content. Then there are
equidecomposable figures Q and Q' such that PUQ and P'UQ’ are equidecom-
posable, and there are further equidecomposable figures R’ and R"” such that
P'UR’ and P" UR" are equidecomposable.

The difficulty is that while the unions mentioned above are all nonover-
lapping, it may happen that Q" and R’ overlap. To avoid this situation, we apply
the lemma to the equidecomposable figures P'UR’ and P"UR" and the given
decomposition of the first of these. Thus we may assume that the triangulation
of P'UR’arises from separate triangulations of P’ and R’. Once this is so, we can
move R’ to some other position in the plane R* and still have P'UR* equi-
decomposable with P”UR". In particular, we may choose R* in such a way that
Q' and R* do not overlap (Exercise 22.4).

Now let R be a figure congruent to R* that does not overlap P or Q, and let
Q" be a figure congruent to Q' that does not overlap P” or R”. Then, by additivity
of equidecomposability, we find PUQUR equidecomposable with P"U Q" UR",
and QUR equidecomposable with Q" UR", so by definition, P and P” have equal
content. This completes the proof of (a).

Statement (b) is trivial.

Statements (¢) and (d) are not difficult to prove after using the lemma to
avoid overlaps (Exercise 22.5).

Now we have defined a notion of equal content for rectilineal figures in the
plane, and we have established enough properties to recover most of Euclid's
results on area. In particular, this notion of equal content satisfies the proper-
ties, 1, 2, 3 listed at the beginning of this section. However, our theory does not
seem to be strong enough to establish properties 4, 5, 6, so we formulate what is
missing as follows.

Z. (de Zolt’s axiom). If Q is a figure contained in another figure P, and if P — Q
has a nonempty interior, then P and Q do not have equal content.

We can think of (Z) as a precise formulation of Euclid's Common Notion 5,
“the whole is greater than the part,” for the notion of content. However, we
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avoid the use of the words “greater” and 'lesser,” because these imply the exis-
tence of an order relation among figures, which we have not yet established. In
fact, the existence of an order relation for content depends on (Z) (Exercise
22.7). We will also see in the exercises that (Z) implies the other two properties 4
and 6 listed at the beginning of this section (Exercises 22.6, 22.8).

I do not know of any purely geometric proof of (Z) from the definition of
content we have given. We will see in the next section, however, that (Z) holds
whenever there is a measure of area function in the geometry. In particular, (Z)
will hold in any Hilbert plane with (P) (Section 23), and also in the non-Euclidean
geometries (Section 36).

Corollary 22.5
In a Hilbert plane, the relation equal content has properties 1, 2, 3 at the beginning of
this section. In a Euclidean plane with (Z), 4, 5, 6 also hold.

Proof 1,2, 3 are contained in (22.3), and 4, 5, 6 are in Exercises 22.6, 22.7, 22.8.

Now let us review Euclid’s results about area and their proofs, substituting
everywhere his “equality” of figures by the notion of equal content developed in
this section. We work in a Euclidean plane (Section 12), i.e., a Hilbert plane with
(P) and (E).

We have already seen (22.1.2) that Euclid’s proof of (1.35) shows that the two
parallelograms have equal content. The next result (1.36) follows using tran-
sitivity of equal content. But in the proof of (1.37) Euclid uses the property that
“halves of equals are equal,” which depends on (Z) (Exercise 22.8). So we will
give another proof, which does not depend on (2).

Proposition 22.6 (1.37)
In a Euclidean plane, triangles on the same base, whose top vertices are on the same
line parallel to the base, have equal content.

Proof Let ABC and DBC be the given
triangles, lying in the parallel lines [, m.
Let E be the midpoint of AB, and draw a
line n through E, parallel to I. Let this K €4 HAG F Lo
line meet DC at F. Then, from (5.1) (cf. Y
Exercise 5.3) it follows that F is the
midpoint of DC. Draw a line through B, £
parallel to AC, to meet n at K, and draw
a line through C, parallel to BD, to meet
nat L.

Then because of parallel lines, we get equal angles, which shows that
AAEG = ABEK using (ASA). So the triangle ABC has equal content with
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the parallelogram BCGK. Similarly, ADHF = ACLF, so that ABCD has equal con-
tent to the parallelogram BCHL.

Now by (1.35), these two parallelograms have equal content. So by tran-
sitivity it follows that the triangles ABC and DBC have equal content.

Continuing with our examination of Euclid’s results, (1.38) follows by tran-
sitivity. Its converse (1.39) uses “the whole is greater than the part” in its proof,
and so depends on (Z). Generally speaking, all of the results in which Euclid
shows that two figures are equal will be valid for the notion of equal content.
However, when a hypothesis of equal content is used to conclude something
involving congruence of segments or angles in the figure, then (Z) will be nec-
essary. So (1.40) also depends on (Z). In (1.48) Euclid says that if squares
have equal content, then their sides are equal, so this result also depends on (Z)
(Exercise 22.6). The remaining results of Book I, namely (1.41)-(1.45) and (1.47)
are all valid for content. So for example, (1.47), the Pythagorean theorem, says
that the square on the hypotenuse of a right triangle has equal content to the
union of the squares on the two legs of the triangle.

In Book II, all of the results make statements about certain figures having
equal content to certain others, and all of these are valid in our framework. Note
that the line-circle intersection property (11.6) is used in (IL11) to divide a line
such that the square on the larger piece has equal content to the rectangle on
the whole and the smaller piece. It is also used in (11.14) to construct a square
with equal content to any given rectilineal figure.

In Book III, Propositions (I111.35) and (111.36) hold for equal content. The
converse (111.37) of (I11.36) requires property 6 above —if squares are equal, their
sides are equal—and so depends on (Z).

In Book IV the only result needing Euclid’s theory of area is (IV.10), to con-
struct an isosceles triangle whose base angles are twice the angle at the vertex.
The proof uses (111.37) and so depends on (Z). In particular, Euclid's proof of the
construction of the regular pentagon (Section 4) depends on (Z). So we see again
how the construction of the pentagon involves all the subtleties of Euclid's
geometry!

At this point we could take (Z) as an additional axiom, and then we would
have a satisfactory basis for Euclid's theory of area. However, we will see in the
next section that (Z) holds in the Cartesian plane over a field, and hence, using
the theorem of introduction of coordinates (21.1), it holds in any Hilbert plane
with (P), and hence in any Euclidean plane. See (23.6) for a summary.

Exercises

22.1 Show that the intersection of any two figures is a figure. Hint: First do the inter-
section of two triangles.
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22.2 Show that the complement of one figure contained in another figure is a figure.
Hint: First do the case where the smaller figure is a single triangle.

22.3 Show that the union of two figures is a figure.

22.4 In a Hilbert plane, given two figures P, Q, show that there is a rigid motion ¢ of the
plane (cf. Section 17) such that P and ¢(Q) do not overlap.

22.5 Prove parts (¢) and (d) of Proposition 22.3.

22,

o

In a Euclidean plane, assuming (Z), suppose that you are given segments AB and
CD such that the squares on AB and CD have equal content. Show that AB and CD
are congruent.

22.7 In a Euclidean plane with (Z), show that there is a total ordering on the set of fig-
ures with the property that P < Q whenever there exists a figure P’ with the same
content as P, and P’ is contained in Q. Hint: Use (1.44) to show that any figure P has
equal content with a rectangle P’ of given fixed side AB.

22.8 In a Euclidean plane with (Z) show that “halves of equals are equal,” in the tollow-
ing sense: If P and Q are figures with equal content, and it P= P, UP; is a non-
overlapping union, where P; and P; have equal content, and similarly Q = Q, UQ»
with Q; and Q3 having equal content, then P; and Q; have equal content.

22.9 In a Euclidean plane, suppose that (Z)
fails in the sense that there exists a A
triangle ABC and a point D between B
and C, such that ABC has equal con-
tent with the smaller triangle ADC.
Then show that for any figure P, there
exists a figure Q containing P, and Q
has equal content with the empty set.
(If you can find a contradiction result- 32 D E
ing from this, you will have discovered
a proof of (Z)!)

2210 In a Euclidean plane with Archimedes' axiom (A), give a direct proot of the ana-
logue of (1.35) for equidecomposability: Two parallelograms on the same base and
within the same parallels are equidecomposable.

2211 Simple closed polygons. A simple closed A
polygon is a finite union of line seg- !
ments Ay Az, AzAa,. o AL ARd,
where Aj, ..., A, are distinct points in
the plane, and the line segments have
no other points in common except
their endpoints, each of which lies on
two segments.

(a) Show that a simple closed polygon
divides the plane into two segment-
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connected (cf. Exercise 7.12) subsets, its interior and its exterior. (This is the much
easier polygonal analogue of the famous Jordan curve theorem for simple closed
curves in R2)

(b) Show that the simple closed polygon, together with its interior, is a figure P
(i.e., a finite union of triangles). Is it always possible to write an n-sided polygon P as
aunion of n — 2 triangles?

23 Measure of Area Functions

In this section we will relate Euclid's theory of area discussed in the last section
with the familiar notion of area as a number. In high-school geometry, most
likely you learned how to compute the area of various figures, but never saw a
definition of area or a proof that it exists. So we will first define an area function
by the properties we want it to have. Then we discuss the question of existence
and uniqueness. We will see that an area function exists in a Hilbert plane with
(P). We will also see that the existence of an area function implies de Zolt's
axiom (Z) discussed in the last section. These two results then put Euclid’s
theory of area on a firm basis.

Definition
An ordered abelian group is an abelian group G, together with a subset P, whose
elements are called positive, satisfying:

(i) Ifa,be P, thena+ beP.
(ii) For any a € G, one and only one of the following holds: a € P;a = 0; —a € P.

As in the case of an ordered field (cf. Section 15) we define a > bifa—beP.
Then the relation > has all the usual properties (15.2).

Definition
A measure of area function on a Hilbert plane is a function «, defined on the set #
of all figures (see definition in Section 22), with values in an ordered abelian
group G, such that:

(1) For any triangle T, we have «(T) > 0 in G.

(2) If T and T' are congruent triangles, then o(T) = a(T").

(3) If two figures P and Q do not overlap, then

2(PUQ) = a(P) + 2(Q).

We call «(P) the area of the figure P, with respect to the given measure of area
function.
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Proposition 23.1
Suppose o 18 a measure of area function on a Hilbert plane.

(a) If P is any figure with nonempty interior, then a(P) > 0.

(b) If P and P' are equidecomposable figures, then a(P) = «(P').

(¢) If P and P' are figures with equal content, then «(P) = a«(P').

(d) If a figure Q is contained in a figure P, and P — Q has nonempty interior, then
2(Q) < w(P). In particular, P and Q cannot have equal content, so (Z) holds (cf. Sec-
tion 22).

Proof (a) Writing the figure P as a union of triangles T, it follows from the def-
inition of a measure of area function that «(P) = " «(T;), and each «(T;) > 0, so
o(P) > 0.

(b) This follows from the property that congruent triangles have equal area
function.

(¢) If P and P’ have equal content, then there are figures Q and Q' that are
equidecomposable and do not overlap with P and P’, respectively, such that
PUQ and P'UQ’ are equidecomposable. Hence «(Q) = «(Q') and «(PUQ) =
o(P'UQ’). Using the additivity property (3) and subtracting in the group G, we
find that «(P) = «(P').

(d) Write P = QU(P— Q). Since P — Q has nonempty interior, «(P — Q) > 0.
Hence by additivity, 2(Q) < «(P). It follows from (c) that P and Q cannot have
equal content. In other words, de Zolt's axiom (Z) stated in Section 22 holds.

Now that we know what a measure of area function is and have seen some of
its properties, the main work of this section is to prove the existence of such a
function in a Hilbert plane with (P). See Section 36 for the existence of measure
of area functions in non-Euclidean geometry.

Theorem 23.2

In a Hilbert plane with (P), there is an area function o, with values in the additive
group of the field of segment arithmetic F (19.3), that satisfies and is uniquely deter-
mined by the following additional condition: For any triangle ABC, whenever we
choose one side AB to be the base and let it have length b € F, and let h be the length
of an altitude perpendicular to the base, then a(ABC) = %bh,

Proof In this theorem, the uniqueness is obvious, because the additional condi-
tion tells us the value of « for any triangle, and any figure is a finite union of
triangles.

For the existence of «, there is no C
choice: For any figure P e 2, write P as
a union of triangles P=T,U ... UT,, h

for each triangle T; choose one side to
be the bhase b;, let h; be the correspond- b
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ing altitude, and define

x(P) = Z%bihi-

The problem is to show that this notion is well-defined: We must show that « of a
triangle is independent of which side we choose as base, and then we must show
that «(P) is independent of the triangulation chosen. After that we must verify
that « satisfies the properties of an area function. We will deal with some of
these questions as separate lemmas.

Lemma 23.3

In a Hilbert plane with (P), let ABC be
any triangle. Let b be one choice of base,
with corresponding altitude h, and let b’ be
another choice of base, with altitude h'.
Then 1bh = 1b'h' in the field of segment
arithmetic.

Proof Let ABC be the triangle, with b = BC, h = AD, b’ = AC, h/ = BE. The two
right triangles ADC and BEC have the angle at € in common; hence all three
angles equal (1.32). So by (Sim AAA) (20.1) they are similar triangles. It follows
that the ratios of corresponding sides are equal, so

h

b b’
Cross multiplying, we obtain bh = b’h’, and so libh = %b’hf, as required.

Thus the function « is well-defined for triangles. The key point in studying
arbitrary triangulations is to see what happens when a triangle is divided into
smaller triangles.

Lemma 23.4

If a triangle T be subdivided into smaller triangles T, in any way whatsoever (but still
a finite number), then the measure of area of the big triangle is equal to the sum of
the measures of area of the small ones: o(T) =3 o(T}).

Proof Step 1 We consider the special
case where a triangle ABC is divided
into two triangles by a single transver-
sal, namely a line that goes tfrom one
vertex (say C) to a point D on the oppo-
site side AB.

h— — — ——
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Then choosing side AB as a base for the big triangle, and sides AD and DB as
bases for the two smaller triangles, all three triangles have the same height, and
the bases AD.DB add up to the base AB, so clearly «(ABC) = a(ACD) +
2(BCD).

Step 2 Next we do a slightly harder
case. Suppose a triangle ABC is sub-
divided into triangles T; such that there
are no new vertices in the interior of the
triangle, and at least one edge (AC in
the picture) is free from new vertices on
the sides of the triangle. Then a(ABC) = A D B
S al(Ty).

We prove this result by induction on the number of the smaller triangles T;.
If there are just two of them, then we are in the situation of Step 1 above. So
suppose there are more than two. The free side (say AC) must belong to one of
the small triangles, say T, and the third vertex D of T; must be on one of the
sides AB or BC (suppose it is AB). Then by Step 1,

o(ABC) = a(T1) + a(BCD).

Notice that BCD has one fewer triangle in its subdivision than ABC. Further-
more, BCD satisfies the hypotheses of Step 2, because it has no interior ver-
tices (since ABC didn't) and the side CD, being interior to ABC, has no vertices
on it. Thus by the induction hypothesis, o(BCD) = >"", «(T:), and we are
done.

Step 3 The general case. Let the trian-
gle ABC be divided into subtriangles T;.
Choose one vertex of ABC, say C, and
draw lines (dotted in the diagram) from
C to each of the vertices of the triangu-
lation, including those on the opposite
side AB, and extend these lines down to
the side AB.

Then we have another subdivision
of ABC, this time by triangles §;. Note
that the subdivision §; satisfies the hy-
potheses of Step 2, so

2(ABC) = (). (1)

1
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Taking all the T; and the §; together gives another subdivision ABC =
U;‘_;‘ T;N§;. These figures T;N S; may be triangles or may have four sides. Add
extra lines so that they become unions of triangles: TN S; = Uk Ug. Thus we
have a third triangulation of ABC into the triangles Uj;.

Next, observe that each §; is the union of triangles Uy as i and k vary, and
this triangulation of §; satisfies the conditions of Step 2! It has no interior ver-
tices, because the lines forming the triangles §; went through all the vertices of
the original triangulation. Furthermore, the side of §; along the base AB is free
of vertices, for the same reason. Thus by Step 2, for each j we have

AS) =Y (Ug). (2)

ik

Combining this with the earlier result (1) about ABC as the union of the ;, we
obtain

A(ABC) = Y a(Uyp). (3)

ijk

It remains to discuss the division of
each T; into the smaller triangles Usy. \
Typically, one of the lines from C ! 1
through the three vertices XYZ of T; will X
cut Ty in halves, say T..T/. (In the N
drawing the line through Z cuts T; in
half) Then by Step 1, «(T)) =o(T)) + l v
(T n 4

Each of these halves is further sub- \
divided by lines through C and addi-
tional lines we have added to cut quadrilaterals into two triangles. These trian-
gulations of T/ and T/ satisfy the conditions of Step 2: There are no interior ver-
tices, and the side through Z, which we used to separate T} into T/ and T/, con-
tains no vertices. Hence by Step 2 again, each of T/ and T! has measure equal to
the sum of the measures of the Uy of which it is composed, and hence

A(T) = 3 a(Uy). (4)
ik
Now, finally, combining this with equation (3) we obtain
%(ABC) = > o(T)) (5)

as required.
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Lemma 23.5
The measure of area of a vectilineal fizure 18 independent of the triangulation used to
define it.

Proof 1If a figure P has two triangulations

P=TyU---UT,
and
P=T/U---UT

i

then the intersections of the T, and T’/ can be further subdivided into triangles
Uy, as in the proof of (22.2). Now applying Lemma 23.4 to each T| = U;‘_k Uy
and to each T/ = [, U, we find that

Z OE(TI-) = Z OE(Uf_jk) = Z Q(T;):

i i1k i

so that «(P) comes out the same either way.

Proof of 23.2, continued From the lemmas (23.3), (23.4), and (23.5) we know
that the function o is well-defined. We need only verify that it has the properties
required of an area function. Since segments give positive elements of F,
o(T) > 0 for any triangle. Congruent triangles have congruent sides and congru-
ent altitudes, so «(T) = o(T’) if T and T’ are congruent triangles.

If P and Q are two figures with nonoverlapping interior, and if we write
P=TU---UT,and Q=T{U --- UT),, we can use all the T; and T to triangu-

late PU Q. In that case the additivity is obvious.

Corollary 23.6

In a Euclidean plane, all of Euclids theory of area, namely (1.35)-(1.48), (1L.1)-
(11.14), (111.35)—(111.37), and (1V.10) hold, where we interpret “equality” of figures to
mean equal content in the sense of Section 22.

Proof We have already seen in Section 22 that all these results tollow from the
definition of equal content plus the statement (Z). In this section we saw that (Z)
is a consequence of the existence of an area function (23.1) and that an area
function exists in a Hilbert plane with (P) (23.2).

Remark 23.6.1

This proof is analytic in that it makes use of the field of segment arithmetic
and similar triangles. We do not know any purely geometric proof, for example
of (1.39), that triangles on the same base with equal content have the same
altitude.




23. Measure of Area Functions 211

Remark 23.6.2

It may be worthwhile to point out that we are not using circular reasoning here.
To be sure, the proof of (Z) we have just given uses the field of segment arith-
metic (19.3), whose proof uses some results from Euclid, Book III (19.2.1). But
the results used were only those that did not depend on the theory of area (cf.
12.4), so that we may now use them to go back and validate earlier results from
Book I on that need the theory of area.

Proposition 23.7
In a Hilbert plane with (P), let « be the measure of area function of (23.2). Then two
figures P, Q have equal content if and only if a(P) = «(Q).

Proof 1If P and Q have equal content, then «(P) = 2(Q) by (23.1). Conversely,
suppose a(P) = «(Q). By (1.44) we can find rectangles P’ and Q' with content
equal to P, Q, respectively, and furthermore, we may assume that one side of
these rectangles is the unit 1 in the field of segment arithmetic. Let a, b be the
other sides of these two rectangles. Then cutting each into two triangles, we see
that (P’) =1-a = a, and 2(Q') = 1-b = b. On the other hand, figures of equal
content have equal «, so a(P) =a and «(Q) = b. Our hypothesis now implies
a = b. Thus the two rectangles are congruent, so P’ and Q' have the same con-
tent. By transitivity, P and Q have the same content. For this proof, note that
(L.44) does not use (E), and so is valid in any Hilbert plane with (P).

Remark 23.7.1

Thus in a Hilbert plane with (P), the theory of content is essentially equivalent
to the theory of area given by the area function of (23.2), so we can also restate
Euclid's theory of area in terms of the area function.

Exercises

23.1 In Theorem 23.2, the uniqueness of the area function was established by requiring it
to have the expected value on every triangle. Suppose instead, in the Cartesian
plane over a field F, we consider measure of area functions, with values in the addi-
tive group of the field, with the weaker requirement that  of the unit square should
be equal to 1.

(a) If the field is Archimedean, show that « is uniquely determined by the above
condition.
(b) If the field F is non-Archimedean, show that there can be more than one area
function having value 1 on the unit square.

23.2 Use the measure of area function of Theorem 23.2 to show that if two squares have
equal area, then their sides are congruent.
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23.3

234

23.6

23.7

Let ABC be any triangle. Let D, E, F
divide the sides in thirds. Draw AE,
BD, CF. Show that the small triangle
formed in the inside has area equal to
+ the area of the whole triangle. Hint:
Review the proof of Proposition 5.4 and
use similar triangles.

Let ABC be any triangle, let DE be a
line parallel to the base, and let F be
any point on DE. Show that the area of
the union of the two triangles DBF and
ECF is less than or equal to one-fourth
the area of the whole triangle, with
equality if and only it D and E are the
midpoints of AB and AC.

To get a feeling for ordered abelian groups, try this one. Let ©Q(v2)=
{a + bW2|abe @}, and similarly 0(V3).

(a) Show that Q(y/2) and Q(+/3) are isomorphic as abelian groups (under addition).
(b) Show that ©(+/2) and @Q(+/3) are not isomorphic as fields.

(c) Show that Q(+/2) and Q(+/3) are isomorphic as ordered sets, with the orderings
induced by the natural ordering on IR. (Here an ordered set is a set S, together with a
relation a < b, having the two properties (i) a < b and b < ¢ implies a < ¢; (ii) if
a,be 8, then one and only one of the following holds: a < b, a = b, b < a.)

(d) @(+/2) and Q(+/3) are not isomorphic as ordered abelian groups (again taking
addition as the group operation).

Prove Ptolemy's theorem: The rectangle formed of the two diagonals of a cyclic
quadrilateral is equal in content to the sum of the two rectangles made by opposite
sides of the quadrilateral.

In a Euclidean plane, show that the results (VI.1) and (VI1.14)-(VL31) hold using
equal content for equality of figures.

24 Dissection

As we have seen in the previous sections, Euclid bases his theory of area on
adding and subtracting congruent figures. This notion is formalized by Hilbert's
definition of equal content (Section 22), which can also be interpreted using a
measure of area function (Section 23). While the notion of content gives a good
general theory, one could complain that it is not practical, in the sense that if

two

figures have equal content, one does not know how much must be added in

order to make them equidecomposable. In Example 22.1.3, the two figures being
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compared both have area 1, but to make them equidecomposable, one must add
a triangle whose area is infinite in the non-Archimedean field F.

In this section we will investigate the stricter notion of when two figures are
equidecomposable (Section 22). This leads to the practical problem of dissection:
given two figures, to find, if possible, an efficient decomposition of the first as a
nonoverlapping union of smaller figures, not necessarily triangles, that can be
reassembled into the second. A dissection exists if and only if the two figures are
equidecomposable. In this case we will also say that one figure can be dissected
into the other, or that they are equivalent by dissection.

We work in a Hilbert plane with (P), and in some cases use also (A) or (E).
We will see that certain of the results, such as the Pythagorean theorem (1.47),
which Euclid proved for content, are also true in the stronger sense of dis-
section. We will prove the theorem, due to Bolyai and Gerwien, that in an
Archimedean plane, any two figures of equal area (Section 23) are equivalent by
dissection.

The practical problem of finding dissections of one figure into another has
received a certain amount of attention among recreational mathematicians, but at
this point it seems to be more of an art than a science. Amateurs have discovered
a number of clever dissections, but prootfs that certain dissections are minimal,
or effective bounds on the number of pieces required, seem to be lacking.

We begin this section with some general results on existence of dissections.

Proposition 24.1
In a Hilbert plane with (P), any triangle can be dissected into a parallelogram.

Proof (cf. 22.6) Let ABC be the tri- A
angle. Let D be the midpoint of AC.
Draw lines through D parallel to BC and
through C parallel to AB, meeting at

F. Then AADE = ACDF by (ASA). So
AABC can be dissected into the parallel- B C

ogram BCEF. ”

Lemma 24.2

Let ABC be a triangle, and suppose that

the foot D of the altitude from A to side BC A
lands outside the interval BC. Then one

of the angles of the triangle, at B ov C, is

obtuse.

Proof Suppose B is between D and C.
Then the angle / ABC is an exterior an-
gle of the right triangle ADB, so / ABC
is greater than a right angle, by (1.16).
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Proposition 24.3
Any parallelogram can be dissected into a rectangle.

Proof Let ABCD be the given parallelo-
gram. Drop the altitudes from C and D
to the side AB, with feet E,F. Suppose,
for example, that E is inside the interval
AB. Then the triangle AACE is congru-
ent to the triangle BDF. So the parallel-
ogram is dissected into the rectangle
CDEF.

Now let us see that we can always apply this construction. In any parallelo-
gram, the opposite angles are equal (1.34) and the sum of the angles is four right
angles, so two of the opposite angles are acute. (If not, all four are right angles
and there is noting to prove.) So we may assume that the angle at A is acute.

Now, if the altitude from C lands
outside AB, then by (24.2) the angle < D
ABC must be obtuse. This forces the
angle ACB to be acute (1.32), and in that
case, exchanging the roles of B and C,
the altitude from B to AC will land
inside the segment AC (24.2), so we can =~ A B €
apply the construction above.

G

Proposition 24.4
Given a rectangle ABCD, and given a segment AE such that AB < AE < 2AB, the
rectangle ABCD can be dissected into a rectangle having one side equal to AE.

Proof Suppose we are given the rect-
angle ABCD and the point E. Let C and ¢ D
E be joined, meeting BD at F. Let G be
chosen on AC such that CG = BF. Con- L
struct the rectangle AEGH, and let K, L K. L

, &« H
be as shown. Because of parallel lines,
the angles at C and F are equal. And CG
was equal to BF by construction, so by
(ASA), ACGK = AFBE. 1t follows that
GK =~ BE, and so by subtraction, CD =
AB = KH. Now by (ASA) again, ACDF
=~ AKHE. This gives a dissection of
the rectangle ABCD into the rectangle
AEGH, as required.

T
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Note that in order for this dissection to work, we need to know that F is
below the midpoint of BD, so that G is above the midpoint of AC, and so F
is below L. This follows from the hypothesis AB < AE < 2AB, because the line
from C to the midpoint of BD would meet the line AB at a point M with
AM = 2AB.

Proposition 24.5
Assume Archimedes' axiom (A). Given any rectangle ABCD and given any segment
EF, there is a rectangle EFGH equivalent by dissection to ABCD.

Proof Given any rectangle, by cutting
it in half and reassembling the two
halves along the other sides, we can
dissect the original rectangle into a new
rectangle with one-half the height and
twice the base of the original one. Now - — e
by Archimedes' axiom, atter doubling or
halving AB a finite number of times, we
may assume AB < EF < 2AB. Then we
apply (24.4) to get a rectangle EFGH as
required.

B S,

Corollary 24.6
Assuming (A) and given a segment EF, any rectilineal figure (Section 22) can be dis-
sected mto a vectangle with one side EF.

Proof Divide the figure P into a finite number of triangles Ty, T5,...,T,. For
each i first dissect the triangle T into a parallelogram (24.1), then to a rectangle
(24.3), then to a rectangle R; with base equal to EF (24.5). Now stacking the rec-
tangles Ry, Ry, ..., Ry, all of which have base equal to EF, on top of each other,
we obtain one big rectangle with base EF, as required.

Theorem 24.7 (Bolyai, Gerwien)
In a Hilbert plane with (P) and (A), let « be the area function of (23.2). Then two
figures P and Q are equivalent by dissection if and only if they have the same area.

Proof One direction follows from (23.1). The new part, which requires the use
of Archimedes' axiom, is that figures of equal area are equivalent by dissection.
The proof parallels (23.7), where the analogous result was proved for content.

So suppose figures P and Q have equal area: o(P) = 2(Q). By (24.6), they can
each be dissected into rectangles with sides 1,a and 1, b. Then «(P) = a, 2(Q ) = b,
so a = b, and the rectangles are equal. Thus by transitivity of equidecompos-
ability (22.2), P can be dissected into Q.
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Remark 24.7.1
This result is false without (A), as is shown by Example 22.1.3.

Remark 24.7.2

This proof is effective, since given figures P and Q of equal area, and given a
decomposition of each into triangles, the method of proof of the results of this
section will lead to a dissection of one to the other. Of course, the dissection
found in this way may not be efficient in terms of the number of pieces required.

Remark 24.7.3

Combining this result with (23.7) we see that in a Hilbert plane with (P) and (A),
two figures have equal content if and only if they are equidecomposable (cf.
22.1.4).

Proposition 24.8

Assume (E). Let ABCD be a rectangle with sides a = AB and b = AC satisfying
a < b < 4a. Then there is a segment ¢ = AE such that the rectangle ABCD can be
dissected into a square with side AE.

Proof Form a segment of length a + b,
let O be its midpoint, draw a circle with
center O passing through the segment's
endpoints, and let ¢ be the segment cut
off on a perpendicular dividing the seg-
ment into a+ b, from the segment to
where it meets the circle. (Here we use
(E) for the existence of the intersection
point.)

Now let ABCD be the given rectan-
gle, let AE be congruent to the segment
¢, and let AEFG be the square on side
AE. Since the angle in a semicircle is a
right angle (111.31), the angles «, f in the i
circle diagram are equal. These are the
same as the angles o, f of the second P
diagram, by congruent triangles (SAS).
Hence the two diagonal lines FB and CE ¢ M
are parallel (1.28). It follows that CF =
MB and FK = BE (1.33). From here the &
same argument as in the proof of (24.4) A 'y
shows that ABCD can be dissected into
the square AEFG.

LI
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In order for this construction to work, we need to know that AB <
AE < 2AB. We assumed that a < b, so the angle « = f is less than one-half a
right angle, and so a < ¢ < b. On the other hand, if ¢ = 2a, then by similar tri-
angles it follows that b = 2¢. This implies b > 4a, contrary to our hypothesis.

Corollary 24.9
In a Euclidean plane with (A), any rectilineal figure can be dissected into a square.

Proof Choose a segment AB. By (24.6) the original figure can be dissected into a
rectangle ABCD with side AB. Cutting the rectangle in halt and reassembling
a finite number of times (again using (A)), as in the proof of (24.5), we may
assume that the sides a = AB and b = AC satisfy a < b < 4a. Then by (24.8) this
rectangle can be dissected into a square.

Next, let us look at the Pythagorean theorem (1.47). Euclid’'s proof shows that
the union of the squares on the legs of the right triangle has equal content to
the square on the hypotenuse. Using Archimedes’ axiom (A) one can improve
Euclid's results about parallelograms (1.35) and triangles (1.37) to hold also for
dissection. Then Euclid's proof will show that (1.47) holds for dissection assum-
ing (A). However, even better than this are several direct proofs of (1.47) by dis-
section that do not need Archimedes’ axiom.

Let us first consider the proof attributed to Thabit b. Qurra (826-901 a.p.).

Proposition 24.10 (1.47)
In a Hilbert plane with (P), the union of the squares on the legs of a right triangle can
be dissected into the square on the hypotenuse.

Proof Let ABC be the original triangle;
let ABDE be the square on AB; let ACFG
be the square on AC; fill in the square
GHEK and the line LM so that DM =
BC. Then the three triangles ADF, FHG, A 1 2
CKG are congruent to the original trian- M D
gle ABC, and GHEK is congruent to the
square on BC. ¢

Now the square on the hypotenuse H G
is dissected into the five pieces 3!
1,2,3,4,5. The first three are congruent o2
to 1',2',3" by construction. The square
on AB is dissected into 1°,3'.5, while
the square on BC is dissected into 2/, 4.
So the result is proved.
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Remark 24.10.1
Here is another proof of (1.47) by dis-
section. Let ABC be the original right

triangle. Draw the squares on the F
three sides as shown. Let O be the cen- #
ter of the square ACFG, and draw lines
through O parallel to the sides of the N N [
square BCRS. o
Now let M, N, P,Q be the midpoints ¢ ¥' b
of the sides of the square BCRS, and A b 3
draw lines through them parallel to AB > g
and AC, to form the figure shown.

We claim that 17,23, 4,5 are
respectively congruent to 1,2,3,4,5,
which will complete the proof by
dissection.

Since O is the center of the square
ACFG, it follows that O is also the mid-
point of the segments KL and HJ. These
two segments are also equal to each
other, and from the parallelogram
BCKL, they are equal to BC. Thus OK,
OL, OH, O] are all equal to one-half of BC; hence are congruent to the segments
BM, MC, DP, PS, etc. Since the lines drawn in the big square are parallel to the
sides of the square ACFG, it follows that 1, 2, 3,4 are congruent to 1/,2',3', 4",

It remains to show that 5 = 5'. Note that MW = LC, since they are corre-
sponding sides of 3 and 3’. From the parallelogram BCKL we see that LC =
BK. But also BK = MX. So by subtraction XW = AB. The figure is symmetrical, so
one can also show that AJ = LC and JC = KA; then a similar argument shows
that XY =~ AB. Thus 5’ is a square congruent to 5.

Note that a proof by dissection requires

(1) a diagram to show the pieces and how they correspond,

(2) a careful construction stating how and in what order the diagram was
drawn, and

(3) a proof, based on the construction (2), showing that corresponding pieces
are congruent.

There may be many ways of making the construction, and it is worth con-
templating which will make the proof easier.
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Exercises

The following exercises take place in a Hilbert plane with (P). Assume that it is a
Euclidean plane, or the Cartesian plane over a field, as needed.

24.1 Using Archimedes' axiom (A) give a direct proof of (1.37) by dissection.

24.2 Dissect a square into three equal smaller squares.

24.3 Use the accompanying diagram to
provide another proof of the Pytha- AR S A
gorean theorem (1.47) by dissection.

You must supply a construction of the

diagram, and then a proof based on v

your construction, that corresponding 57

pieces are congruent.

24.4 Find a dissection of an equilateral triangle into a square. After writing your con-
struction and proof, make a model with construction paper and numbered pieces
to llustrate your dissection.

24.5 Prove or disprove the existence of a dissection of a square of side 21 into a rectan-
gle of sides 13, 34 according to the diagram below.

1%

2 1%

Ld)




220

24.6

5. Area

Let ABC be any triangle. Let D be a point on AC. Prove that there is a dissection of
ABC into a trapezoid PQRS as shown. What condition is necessary on the point D
for this to work?

A

Use the previous exercise to find a dissection of two equilateral triangles of side 1

Prove or disprove: For any integer n = 1, the minimum number of triangles
required to dissect a square of side 1 into a rectangle of sides n and 1/n is 2n.

Dissect a square into eight strictly acute triangles (all angles less than 90°).

If a square is dissected into n triangles of equal area, then n must be an even

P
2
Ry
24.7
into a single equilateral triangle of side /2.
24.8 Prove the existence of Dudeney's
(1929) dissection of an equilateral tri-
angle into a square using four pieces,
as suggested in the accompanying
diagram.
24.9 Dissect a regular pentagon into a square.
24.10
2411
2412
number.
24.13 Consider a restricted form of dissec-

tion problem, where you can cut the
figure in pieces and move the pieces
around in the plane, using translations
only (i.e., no rotations, and no turning
pieces over). Show that you can dis-
sect the unit square, with translations ! L
only, into the unit square with any

other given orientation.
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24.14 Divide the unit square by its diagonal T
into two (congruent) triangles Ty, Ts. !
Show that it is impossible to dissect Ty

into T: using translations only. T

24.15 If P and P’ are any two figures with the same area, then assuming Archimedes'
axiom, show that it is possible to dissect P into P’ using translations and 180° rota-
tions only.

2416 Let T be a triangle whose smallest angle is greater than or equal to 45°. Then T can
be dissected into a square using 5 or tewer pieces.

2417 Let T be a triangle having an angle « with tana < 1/a for some a e I, a > 1. Then
any dissection of T into a square requires = ﬁ\/ﬁ pieces. In particular, there exist
triangles requiring arbitrarily many pieces to dissect into a square.

2418 Let T be a triangle whose smallest angle « satisfies tana > 1/a, for some a e F,
a = 1. Then T can be dissected into a square using no more than 3\/a + 4 picces.

25 Quadratura Circuli

No discussion of area would be complete without mention of the classical prob-
lem of squaring the circle. Through the ages this problem has had an influence
way beyond the confines of mathematics as an archetype of the insoluble prob-
lem. In one of his religious meditations, John Donne (early seventeenth cen-
tury) mentions squaring the circle as something only God can achieve. Perhaps
the expression “to put a round peg in a square hole” is a modern vestige of this
old problem. And yet what a natural problem it is! The circle is the perfect
round form, while the square is complete with its four equal sides and equal
angles. What could be more natural than to transform the one into the other?
But the solution has been as elusive as the alchemist's search for a way to trans-
form lead into gold.

The problem is to construct a square with area equal to a given circle. What
does this mean, exactly? By “construction,” of course, is meant a geometrical
construction with ruler and compass. But what is the area of a circle? In the
theory of area presented so far, which corresponds to Euclid’s usage in Books
[-VT of the Elements, we have discussed the area of rectilineal figures only. So
there is another problem implicit in the problem of squaring the circle, namely
to give a good definition of the area of a circle. In the language of Section 23, we
might ask for a measure of area function defined on all plane regions that can be
bounded by straight line segments and arcs of circles. A modern approach to
this (in the real Cartesian plane) is to use a definite integral to define the area.
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Euclid never defines the area of a circle, and wisely avoids the problem of
squaring the circle, but in Book XII, he does have a proposition saying that the
ratio of the area of one circle to another is equal to the ratio of the squares of
their radii. His proof makes use of the “method of exhaustion,” which we would
call a limiting process. The key result, which is remarkably similar to the treat-
ment of the Riemann integral in modern calculus classes, is this.

Proposition 25.1

In a Euclidean plane with (A), given a circle I', one can find an inscribed polygon P
and a circumscribed polygon P' such that the difference in area a(P') — o(P) is less
than any preassigned quantity (as an element of the field F of segment arithmetic).

Proof Start with any inscribed polygon
P and any circumscribed polygon P’,
where the vertices of P are the points of
tangency of P'. If we double the number
of sides of P and P’ by bisecting all the
central angles of P, then we get new
polygons P, and P]. We compare the
difference of P, and P, to the difference
of P and P'. Let us look at the triangle
ABC, which is one piece of P/ — P. The
new difference P{ — P, intersected with
ABC is represented by the shaded area.

Euclid shows that the shaded area is
less than one-half of the area of the tri-
angle ABC. In fact, its area is less than
or equal to ﬁ of the area of that triangle
(Exercise 23.4). So every time we double
the number of sides, the new difference
in areas of outside and inside polygons
is less than half of the previous ditter-
ence. Hence, using Archimedes’ axiom
(A), it can be made less than any preas-
signed quantity.

Approximating the circle by its inscribed and circumscribed polygons, Euclid
could show that the ratio of the area of a circle to the square of its radius was a
constant independent of the size of the circle. This constant, of course, is what
we now call . Archimedes, who lived shortly after Euclid, used the method of
approximating by polygons to obtain the estimate 3%,-? <n< 3%, or in fractions,
% <m< 2},—2 Thus began one facet of the work inspired by the problem of squar-
ing the circle, namely to find increasingly accurate numerical approximations
for m. Energetic human calculators worked hard on this problem, so that by
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1600, the value of n was known to 15 decimal places, by 1700 to 71 places, and
by 1873 to more than 500 places. Even today, the urge to compute is still strong,
and with the help of electronic calculators, the value of m has been found to
more than one billion decimal places.

Coming back to the original problem of squaring the circle, it has always
been regarded as very difficult, if not impossible. Since Lindemann proved in
the 1880s that 7 is transcendental we have known that the problem as originally
stated is mathematically impossible (cf. 13.2). Nevertheless, the problem has
exerted a great fascination on the inquiring mind, and over the years, many
people have come forward with solutions. The study of these solutions forms a
colorful chapter in the history of mathematics.

The solutions can be divided into three general categories.

I. Honest ruler and compass constructions that, however, give only an ap-
proximate solution to the problem. One of the best of these depends on the
coincidental proximity of the number %(3\/5 +9) = 3.14164 ... to 7.

II. Constructions using additional tools that give an exact solution to the
problem. One such known from antiquity uses an auxiliary curve, the quadratrix.

Take a quadrant AOB of the unit
circle. Let OA; bisect the right angle, g_ A
and let B, bisect the interval OB. Let the >
radius OA; meet the horizontal line '
through B, at C,. Bisect the two 45° an-
gles at O with OA; and OAj;, and bisect
the intervals OB, and BB with B,, Bs.
Let the radii meet the corresponding
horizontal lines in C; and C;. Continu-
ing in this manner, bisecting angles and
segments, one can construct as many
points as one likes C;,C3,Ca,.... The
curve passing through these points is
called the quadratrix.

With a little help from modern trigonometry we can express the curve para-
metrically as

20
xz:ztanb"
20

H=;s

where € is the angle of the radius to the x-axis. As ¢ tends to 0 we obtain the
point D where the curve meets the x-axis. Its x-coordinate is 2/z (Exercise 25.1).
So clearly, if we are given a copy of the quadratrix curve, we can obtain the
quantity z, and hence can construct a square with area equal to a given circle.
Note, however, that this is not an honest ruler and compass construction:
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Though we can obtain as many of the C; as we like by ruler and compass, the
point D is obtained only as a limit of the C; as they approach the x-axis.

II1. Solutions by people 1T would like to call fringe mathematicians, though
they have been called by worse names, who have little mathematical training
but are attracted to famous problems like the moth to the flame. The hint that a
problem may be insoluble inspires them to work even harder, as they have a
conviction that they will succeed where others have failed. Their solutions are
a jumble of facts and fallacies lacking in logical coherence. Pointing out their
errors and quoting the results of established mathematicians only confirms their
belief that they have discovered the real truth that all the scholars were too blind
to see. Sometimes their solutions come from divine inspiration, which leaves
little room for discussion, since one cannot argue with God.

A case in point is Joseph Ignati Carl von Leistner, a knight in the service of
Francis 1 (1708-1765), duke of Lorraine, and later Holy Roman emperor. Herr
Leistner discovered that the exact value of m was 3844,/1225. When his discovery
did not occasion the acclaim he expected, he used his influence with the duke to
appoint a imperial commission to report on his work. This commission natu-
rally pointed out his errors, upon which he published a lengthy rebuttal attack-
ing his critics and defending his work. Apparently, Herr Leistner believed that
the true value of m would be a ratio of integers, but that no one had yet heen
clever enough to find the right ones, as he did. One of his arguments goes like
this: “Archimedes proposed the values 22/7 and 223/71, but even he acknowl-
edged that they were not correct, while mine is the correct value.” Herr Leistner
failed to notice that his value fell outside of the bounds proved by Archimedes.
On the occasion of his lord's marriage to Maria Theresa of Austria in 1736, Herr
Leistner published a treatise on the wonderful coincidence of the numbers 3844
and 1225 with various dates and other numbers from the life of the duke and his

bride.

Exercises

25.1 (a) Derive the parametric equations for the quadratrix given in the text.
(b) Use a little first-vear calculus to show that the point D has x-coordinate 2 /7.

25.2 (a) Let I' be the circle of radius 1. Find the area of the inscribed polygons of 6, 12, 24,
48, 96, 192 sides, and express them in standard form (Exercise 13.2) as a rational
number times an expression involving integers and square roots. Then verify that
the area of the inscribed 192-gon is greater than 223/71, thus confirming Archi-
medes’ estimate 223/71 < n. (Check: To four decimals, area of inscribed 48-gon is
3.1326, 96-gomn is 3.1394, 192-gon is 3.1410.)

(b) Show that the area of the circumscribed 96-gon is less than 22/7, confirming the
inequality & < 22/7.
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26 Euclid’s Theory of Volume

Euclid discusses three-dimensional geometry in Book XI, and beginning with
(X1.28) he treats the volume of solid figures. As with area in Book 1, there is no
definition of volume, and no acknowledgment that we are dealing with a new
sort of equality different from congruence. From his proofs it becomes apparent
that he is using “equality” of solid figures to mean equality of volume. Exactly
what his notion of volume is becomes more clear as we progress; to begin with,
we can think of a notion similar to the notion of content for plane figures,
achieved by adding and subtracting congruent pieces of a dissection of the
figure.

To simplify our discussion of Euclid’s text, let us suppose that we are work-
ing over a fleld F and are given a volume function v that to each solid figure
P associates a nonnegative element v(P) e F, that assigns the same volume
to congruent figures, and that is additive for unions with nonoverlapping in-
teriors. Each of Euclid’'s results can be interpreted as saying that certain figures
have equal volume. Our attention will be focused on how Euclid proves this
equality.

0

First we fix our terminology. A pyr-
amid is a solid figure formed by taking a
plane figure, say ABCD, and joining its
vertices to a point O outside the plane
of ABCD. 1f the base is a triangle, we
speak of a triangular pyramid, if the base
is a square, a square pyramid, etc.

A prism is a solid figure formed by
taking two congruent figures in parallel
planes, with parallel edges, and joining

their corresponding vertices. Its faces
consist of the two original congruent
fizures, plus parallelograms joining the B’
corresponding sides. If the base is a tri-
angle, it is a triangular prism (as shown). A’

A parallelepiped is a prism whose
base is a parallelogram. It is formed by
three pairs of parallelograms in parallel

planes. \/




26. Euclid’s Theory of Volume 227

Euclid's first results concerning vol-
ume are proved by methods entirely
analogous to the methods of Book 1. So
for example, in (X1.28) he shows that a
parallelepiped is bisected by the plane
through two opposite edges. Note that
Euclid proves that the two halves have
congruent faces and angles. But they

cannot be superimposed on each other
in three dimensional space, because
they are mirror images. However, Leg-
endre gives a proof that they are equiv-
alent in the sense of dissection, and we
will see later (Exercise 26.1) that any
solid figure is equivalent by dissection
to its mirror image.

Using techniques exactly analogous to those of Book I, Euclid shows (X1.29)
and (X1.30) that parallelepipeds with the same base and of the same height have
the same volume. Then (X1.31) he shows, using the method of (1.44), that paral-
lelepipeds having equal bases (in the sense of same content) and of the same
height have equal volume. Using these results, one could show as a corollary
that any parallelepiped has the same volume as a rectangular parallelepiped
with sides 1,1, and a, for some a € F. In fact, assuming the field to be Archime-
dean, one can accomplish this by dissection, that is, by cutting the solid into
pieces and rearranging.

As an interesting application of
these methods, Euclid shows (XI.39)
that if we are given two triangular
prisms, one lying on its side, and the
other standing up, and if the parallelo-
gram base of the one is equal to twice
(in the sense of content) the triangular
base of the other, and if they have the
same height, then they have equal
volume.

The method is to double each to get parallelepipeds, which have equal vol-
ume by the earlier results, and then appeal to the principle that “halves of
equals are equal.” When we think of volume as a function with values in a field,
this principle poses no problem. However, if we sought to develop a purely geo-
metric theory of volume by dissection or by content, as we did for area, it would
require justification.

So we see that the theory of volume of parallelepipeds and prisms can be
handled by methods familiar from the theory of area, and this involves nothing
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really new bevond translating ideas from the plane into three-dimensional
space.

When we come to the study of the volume of pyramids in Book XII, how-
ever, the situation is quite different. The key result here is (XI1.5), which, in a
special case, is the content of the following proposition.

Proposition 26.1 (XIL5)
Triangular pyramids having equal bases (in the sense of content) and equal height
have equal volume.

Proof For the proof, Euclid uses the method of exhaustion, attributed to Eudoxus.
The idea is to write both figures as infinite unions of subfigures of equal volume,
each one equal to more than one-half of what was left over after removing the
previous subfigures. In this way the subfigures “exhaust” the entire figure, and
from the equality of volume of the subfigures one concludes the equality of vol-
ume of the whole figures. This last step requires an explicit use of Archimedes’
axiom, because as Euclid says in the proof of (XI1.5), if the two pyramids were
different, let this exhaustion process be done until the remainder left over is less
than the difference of the two pyramids. This is possible because each remain-
der is less than one-half of the previous remainder, and so by repeating this
process can be made smaller than any preassigned quantity.

In modern language, we would say that the volume of the whole pyramid is
the limit of the volumes of the subfigures, and the definition of limit using &'s
and d's is nothing but a modern rewording of the argument Euclid uses here.

Now let us examine the particulars
of the proof. Let ABCD be one of the A
given triangular pyramids. Let E, F, G,
H, ], K be the midpoints of the sides.
Then the pyramid P is decomposed into
four pieces: two smaller pyramids P, = £
AEFG and P, = FBHK, which are con-
gruent to each other and have edges ¢ c
equal to % the edges of P; and two trian-
gular prisms T; = FHKG/D and T; =
EFGCH]. Of these, Ty is lying on its
side, while T, is standing up, and the H T
base of T, is a parallelogram HJKD
equal to twice the triangle CHJ (in fact,
it is the union of two triangles congru-
ent to this one, if one draws the line JK).

So by (XL1.39), T, and T, have the same volume. Furthermore, since T; and
P have the same base EFG, and the same height, and one is a prism while the
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other is a pyramid, it is clear that T; is greater than P; in volume. (In fact, the
pyvramid ECH]J is congruent to P; and is contained in T5.) So we conclude that
T, + T, is more than one-half of P in volume.

Now suppose we divide the second pyramid P’ similarly into two pyramids
P/, P} and two prisms T, T,. Since the base triangles of P and P’ are equal in
content, it follows that parallelepipeds on the bases of T, and T of the same
height will have equal volume (XI.39), and hence their halves T, and T} will
have equal volume. So T, + T, and T} + T, have equal volumes, which are re-
spectively more than one-half the volumes of P and P'. Moreover, the re-
mainders Py + P; and P| + P, are unions of pyramids of equal height and having
bases of equal content.

Thus, inductively, we can repeat this process and write each of P, P;, P, P}
as unions of four pieces, two pyramids, and two prisms, and continue in this
manner.

Since the prisms constructed at each step have equal volume, and these
exhaust the pyramids as explained above, in the limit, we find that P and P’
have the same volume.

Corollary 26.2 (XI1.7)
A triangular pyramid has volume equal to one-third of a triangular prism on the
same base and of the same height.

Proof Let ABCDEF be a triangular
prism. We can regard the prism T as the
union of three pyramids P, = CDEF,
P, = ACDE, and P; = ABCE. B
Think of Py and P; as pyramids with
vertex E and bases the triangles CDF
and ACD. These two triangles are A C
halves of the parallelogram ACDF,
hence have equal area (or content). So
by (26.1) P, and P; have equal volume.
The two pyramids P; and P; can be
regarded as pyramids with vertex C and
bases the triangles ADE and ABE. These E
triangles are halves of the parallelogram b
ABDE, hence have equal content. The
two pyvramids have the same height, so
by (26.1) again, P; and P; have the same
volume.
Thus Py, Pz, P3 all have the same volume, so this volume is equal to one-third
the volume of the prism.
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Euclid’s use of the method of exhaustion here requires some comment. First
of all, it is clear that a theory of volume based on this result will he considerably
more complicated than the notion of content for plane figures. If we presuppose
the existence of a volume function and work over an Archimedean field, this is a
perfectly good proof. However, if we wish to establish a purely geometric theory
of volume, we will have to allow limiting processes such as this method of
exhaustion in our definition, along with the earlier notions of dissection and
complementation.

Secondly, we can wonder whether this method is really necessary. Note that
(XIL.5) applies to the problem of mirror images mentioned earlier. Any figure
bounded by planes can be cut up into a finite number of triangular pyramids, so
it is enough to show that a triangular pyramid P has the same volume as its
mirror image P’. Since P and P’ have congruent bases (hence same content) and
the same height, (XIL.5) applies to show that P and P’ have the same volume.

Gauss, in a letter to Gerling in 1844, says that it is too bad that the equality of
volume of two symmetrical but not congruent figures can be proved only using
the method of exhaustion. Gerling in his reply gives a direct proof that any tri-
angular pyramid can be dissected into twelve pieces that are congruent to those
in a dissection of its mirror image (Exercise 26.1). Gauss responds yes, that is
nice, but it is still unfortunate that the proof of (XIL.5) seems to require the
method of exhaustion.

These reflections, contrasted with the theorem of Bolyai and Gerwien that
plane figures of equal area are equivalent by dissection (24.7), led Hilbert to in-
clude this question in his famous list of the 23 most important problems facing
mathematics in the twentieth century, which he presented at the International
Congress of Mathematicians in 1900. The third problem was to show that the
method of exhaustion really is necessary, by exhibiting two solid figures of the
same volume that cannot be subdivided in any way into a finite union of con-
gruent pieces. This was done in the same year by Max Dehn, who showed that
indeed, the method of exhaustion is necessary. In particular, it is not possible to
dissect a regular tetrahedron into a finite number of pieces that can be re-
assembled into a cube (Section 27).

Exercises

26.1 Gerling's proof that a triangular pyramid and its mirror image are equal by
dissection.

(a) Let ABCD be a given triangular pyramid. Show that it can be inscribed in a
sphere, ie., there is a sphere containing the points A,B,D,D. Then by drawing
planes through the center O of the sphere and the edges of the original pyramid P,
show that P can be dissected into four triangular pyramids Py, Py, P, Py with bases
ABC, etc., and such that the vertex O is equidistant from the three vertices of the
base of each P,




27. Hilbert's Third Problem 231

(b) Now let P, = OABC be a trian-
gular pyramid with O equidistant from

A, B, C. Drop a perpendicular OD to the 0

plane of ABC, and show that D is equi-

distant from A,B,C. Then by drawing A mc
planes through OD and A, B, C respec- .D L‘

tively, show that P; is subdivided into
three right isosceles triangular pyramids
P11, Py, P13, So for example, P = Y
OABD, and OA = OB, DA = DB, and

OD 1 DA and OD 1 DB.

(c) Show that a right isosceles triangu- A A
lar pyramid Pp; as just described is ' X
congruent to its mirror image, by a

motion in 3-space. \ B

(d) If P is the original pyramid, and P’ its mirror image, show that P =3 P; and
P'=3%" P} are two decompositions into twelve pieces each, and Py = PJ.

26.2 Show that a regular tetrahedron of edge 1 can be dissected into four regular tetrahe-
dra of edge 1 plus a regular octahedron of edge L.

27 Hilbert’s Third Problem

As mentioned in the last section, Hilbert's third problem was to show that the
method of exhaustion really is necessary in Euclid's proof of (XII.5). More pre-
cisely, the problem is to find two solid figures of equal volume that are not
equivalent by dissection, even after possibly adding on other figures that are
equivalent by dissection. This problem was solved in 1900 by Max Dehn, and
here we give a modern algebraic version of his solution.

This is another example of the use of methods of modern algebra to solve a
purely geometric problem. To show that a certain dissection is possible, it is
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enough to exhibit the dissection and prove that the parts are congruent. This we
have done with many areas (Section 24), and it is a purely geometric process.
However, to show that a certain dissection is not possible requires a different
approach.

In contemporary mathematics, a proof that certain geometric objects are not
equivalent in some way is usually accomplished by defining an invariant that is
the same for equivalent figures, and then showing that the invariant of the fig-
ures in question are different. This is the philosophy behind the study of homo-
topy and homology groups in topology, for example. Modern algebra renders a
great service in providing the tools for defining these invariants and calculating
them.

In the present case, we will define a certain abelian group G, and tfor each
polyhedral figure P we will define an element d(P) € G, called the Dehn invariant
of P. We will show that ¢ of congruent figures is the same, and that d is additive,
in the sense that (P, UP;) = d(Py) + &(P;) for figures Py, P, with nonoverlapping
interiors. It follows that figures that are equivalent by dissection or by com-
plementation (the three-dimensional analogue of equal content—cf. Section 22)
have the same invariant 4. We will compute ¢ of a tetrahedron, which will he
nonzero, and d of a cube, which will be zero. This will show that a tetrahedron is
not equivalent to any cube by dissection or complementation.

We start with the definition of the group G.

Definition
Let G be the set of all expressions
((,«1'.1 1 0(1) + (a'Z-:O(Z) + -+ {al"hal'l)!

where a; are real numbers (a; € R), and the o are real numbers modulo =
(% e R/nZ), modulo the equivalence relation generated by the two following
types of operations:

(G._. q) + (G,ﬁ) = (a!':x +ﬁ),
(a,o) + (b,a) = (a + b, ).

We define addition by adding one expression to another to make a longer expres-
sion, and the order of the terms does not matter. Thus addition is associative
and commutative.

Lemma 27.1
G is an abelian group (called the tensor product R ® 5 R/#Z).

Proof We must show the existence of an additive identity (O) and additive
inverses. First we note that for any a € R,
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(a,0) = (a,0) + (0,0)
= (a,0) + (a,0) + (—a,0)
= (a,0) + (~a,0)
~(0,0)

using the rules of operation above. Similarly, one can show that (0, ) = (0, 0) for
any x € R/nZ.
Now let O = (0,0). Then for any (a, «),

O+ (a'! 1) = (0, 0) + (a! 1)
= (a, O) + (.{.I.,OE)
= (a._, 0()

so O is an additive identity.

Given any (a,x), if we add (—a, «) we get (0,a) = O, so (—a, =) is an additive
inverse. Thus G is an abelian group. For simplicity we will henceforth denote O
by 0.

Definition

For any polyhedral solid P in Fuclidean

3-space over the real numbers, we de-

fine its Dehn invariant o(P) e G as fol-

lows. For each edge of P, let the length

of the edge be a, and let « be the dihe-

dral angle (measured in a plane perpen-

dicular to the edge) in the interior of the

solid between the two planes meeting A

along the edge. &
We take « in radians to be a positive

number and reduce (modn). Then we

define

S(P) = (an ),

where the sum is taken over all the
edges of P.

Example 27.1.1

Let P be a cube whose edge has length

a. The dihedral angle between any two

faces is a right angle, so re

O(P) = 12(a.n/2),
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since there are 12 edges of length a. Now, in the group G,

(a,n/2) = (a/2,7/2) + (a/2,7/2)
= (a/2,n) = 0.
Hence d(P) = 0.

In fact, the same method shows that J6(P)=0 for any rectangular
parallelepiped.

Example 27.1.2

Let P be a right triangular prism with
base edges a, b, ¢, base angles o, ff, y, and
height h. Then

o(P) = 2(a,n/2) + 2(b,n/2) + 2(c,m/2)

ol c
As above, (a,n/2) = 0, and similarly for z i
b and ¢. Now, in G we have ' o "

(h,o) + (h,f) + (h,y) = (h,2r) = 0.
So §(P) = 0.

Example 27.1.3
Let P be a regular tetrahedron of edge a. Then P has six edges of length a, all
having the same dihedral angle 2, so

O(P) = 6(a, ).

We can compute the angle « by
drawing the altitudes of two of the
faces. We get a triangle AHC, with
AC =a, and with AH = HC = /3/2a,
the altitude of an equilateral triangle.
The perpendicular from A to the face
BCD of the tetrahedron meets it at a
point K equidistant from A,B,C. So K is
the centroid of ABC, and HK=%HC.
From this we conclude that

W=

COsd =

and this determines the angle .
We will show later that §(P) #£0
in G.
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Proposition 27.2
The Dehn invariant é has the following properties.

(a) If P and P" are congruent, then 8(P) = d(P').
(b) If Py and P, have nonoverlapping interiors, then

()(Pl U.Pz) = ()(Pl) +(’>(P2:]

Proof Statement (a) is obvious, because congruent figures have congruent
edges and congruent dihedral angles, so their lengths a; and measure of angles
o; are equal.

For (b), in comparing the union P; U P; to the two pieces P, and P, there are
three ways in which the edges of Py UP; can be different than the aggregate of
the edges of P, and P;. In each case we will show that the contribution to d is the
same.

Case 1  An edge of P; and an edge of P; A

can be glued to form a single edge of '

Py UP;. In this case the angle « of that

edge in P U P, will be the sum o + o3 of 4"{‘

the angles in P; and P;. <
Since (a,u; + o) = (a,00) + (a,02) in

G, the contributions to d are the same.

Case 2 Two edges of length a in P, and
of length b in P, having the same angle
o can be attached end to end to form a b
single edge of Py UP;. Since (a+ b,a) =
(a,o) + (b, o) in G, the contributions to d

<<

<
are the same. <

{

Case 3 Two edges of P; and P, can be
glued so as to make a single face. In this
case there is no corresponding edge of
PyUP;. But the dihedral angles o, ff of
that edge in P, and P, will add up to n.
Since

(a,o) + (a,f) = (a,m) =0 in G,

the contribution to é is unchanged.
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There are some further possibilities, essentially equivalent to those above,
which we leave to the reader. This shows that ¢ is additive, as claimed.

Proposition 27.3 (Dehn's solution to Hilbert’s third problem)
In Euclidean 3-space over the real numbers, a tetrahedron cannot be dissected into a
cube.

Proof Because of the properties (27.2), any two figures equivalent by dissection
must have the same Dehn invariant. We have seen that the invariant of a cube
of any size is 0, so it is sufficient to show that the invariant of a tetrahedron is
nonzero. This will be a consequence of the following two lemmas:

Lemma 27.4
An element of the form (a,«) € G is zervo if and only if a = 0 or o is a rational multi-
ple of n(o € n@Q).

Proof First suppose « € nQ, so o = (r/s)z, with r,s € Z. Then in G we can write

= s(lar) = (fas) = (L) =0

Conversely, suppose a#0. We will define a group homomorphism
9 : G — R/nQ as follows. Think of IR as a vector space over @Q. Since a # 0,a@ is
a 1-dimensional subvector space. Choose a complementary subspace V, so that
every element b € IR can be written uniquely as

b=ra+v

with ¥ € @ and ve V. For any element g = > _(b;, ;) € G write each b; = ria + v
with 1, € Q,v; € V, and define

p(g) = > 1p e R/nQ.

We must check that ¢ is well-defined. First, note that if f, e nZ, then
rifi; € 7@, so it is well-defined on f; (modx). Second, we must see whether ¢ re-
spects the equivalence relation used to define G. If

(b.p) = (b1, B) + (b2.B)
and
by =na+ v,
by = ra + vs,
then

b= (r+r)a+ (v1+v2),
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p(b,f) = (r +r2)f = p(br1, f) + ¢(b2, ).
On the other hand, if
(b,B) = (b, 1) + (b, Ba)

and b = ra + v, then

9, ) = r(f1 + B) = (b, 1) + ¢(b, B,).

Thus ¢ is well-defined.

Now observe that a =1-a+ 0, so p(a,a) =« € R/a®. So if (a,«) = 0 in G, it
follows that @(a, o) = 0 in R/z@Q, and hence « € n@Q, which is what we wanted to
prove.

Lemma 27.5
If o is an angle with coso = %, then a is not a rational multiple of .

Proof We will offer two proofs of this fact. The first is “elementary” in the sense
of using nothing more than trigonometry, hut does not give much insight into
why the result is true. The second is more conceptual, but uses results from the
Galois theory of cyclotomic extensions of @.

1st Proof From a small right triangle

we see that tan o = 2v/2. Our proof will

consist in showing that for every posi-

tive integer n, tanna # 0, co. This is suf- 3

ficient to show that a ¢ n@Q, because if «

were a rational multiple of n, then some

nx would be an integral multiple of z, in o

which case tannz = 0 or oo. P
We compute tan na inductively using the angle sum formula for tangents:

2%

tan o + tan nox
tan{n + 1)-3: = e
1 — tanatan ne

In this way we find that
tano = 2v/2,

4
tan20c=—§\/§,
10
tan 3o = — V2,
an 3o 23\/__

and so on. More generally, if tan na = a/by/2, with a, b € Z, then

a+ 2b
t 1o = 2.
an(n+ 1)z - me/F
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We conclude, inductively, that tanno is a rational multiple of /2 for all n = 1.
While the rational numbers that occur seem more and more complicated, mat-
ters are simpler if we look at the numerator and the denominator of this fraction
(mod 3). To be precise, consider the transformation that takes an ordered pair
(a,b) and sends it to (a + 2b,b — 4a), and regard a, b as elements of Z/3Z. Start-
ing with a = 2, b = 1, we obtain

(2,1) — (1,2) — (2,1).

After two steps it repeats. We conclude that for any n > 1, tanna = (a/b)y/2,

with (a,b) =(2,1) or (1,2) {mod3). In particular, neither of a,b can be 0, so
tanne # 0, oo, as required.

2nd Proof If c:osoc:i—,, then sina = z

%\/f . Consider the (:omf}lex number

z=c:osot+isinoc=%+%\/—2.

Obviously, z is a root of a quadratic
equation over @ (in fact, 3z%+ 2z +
3 =10), so z generates a field extension
@Q(z) of degree 2 over Q).

M

G-

Now, if o is a rational multiple of n, then we can write o = P 9r with P,

geZ, (p,q) = 1. In this case z will be a primitive gth root of unity. Its minimal
polynomial over @ will be the cyclotomic polynomial ®,(z), which has degree
»(q), where ¢ is the Euler ¢ function (32.7).

In our case z has degree 2 over @, so we conclude that ¢(q) = 2. If
g = pit...pg is the prime factorization of g, then

olg) = [T v (=)

So the only values of g that give ¢(g) = 2 are g = 3,4, 6. The corresponding field
extensions are Q(+/—3) and Q(i). Neither of these is equal to Q(z) = Q(v/—2), so
we have a contradiction. This shows that « is not a rational multiple of x.

Exercises

27.1 Compute the Dehn invariant of a regular octahedron of side a. Show that this ele-
ment is nonzero in G, so the octahedron cannot be dissected into a cube. Show fur-
thermore that an octahedron cannot be dissected into a regular tetrahedron.
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27.2 Show that two tetrahedra of edge 1 cannot be dissected into a single tetrahedron of
edge V2. Is it possible to dissect 8 tetrahedra of edge 1 into a single tetrahedron of
side 27

27.3 1Is there any triangular pyramid with Dehn invariant 07

27.4 Compute the Dehn invariant of a right h 0
isosceles  triangular pyramid (Exercise
26.1) OABC with AB = AC = a, base
angle / BAC =, with OA perpendicu-
lar to the plane of ABC, and dihedral
angle « along BC. Use this to determine 8
the image of the map 4, i.e., the sub-
group of G consisting of elements @
that are the Dehn invariant of some A
polyhedron.

C

27.5 Imitate the first proof of Lemma 27.5 to show that if tanx € @), and « is a rational
multiple of #, then tanx = 0, +1, so. Hint: Let tans = (r/s) with r,se Z, (r,s) = 1. If
r,s are not both +1, take an odd prime divisor p of r? + 5%, and make a calculation
(mod p) similar to the one (mod 3} in (Lemma 27.5).

27.6 Use the second proof of (Lemma 27.5) to show that if cosa e @ and if o is a rational
multiple of n, then cosa = 0, i%, +1.

Hobbes, on being asked why he did not read
more? answered, if I read as much as other
men, [ should know as little; his library con-
sisted of Homer, Thucydides, Euclid, and Virgil.

- from the introduction to the
Retrospective Review, Vol. 1(1820)







| Construction
- Problems and
... Field Extensions

uring the earlier parts of this book, we started always
from Euclid’'s geometry, developing and expanding it
using our modern mathematical awareness. Because
of the construction of the field of segment arithmetic,
one could even argue that the use of fields in Chapter
4 arises naturally from the geometry. In this chapter,
however, we will make use of modern algebra, the
theory of equations and field extensions, and in par-

. - ticular the Galois theory, as it developed in the late
nineteenth and early twentieth centuries.

We use algebra as a lens to examine and interpret geometrical questions in
a new way. It was this algebraic interpretation that first provided the tools for
rigorously proving the unsolvability of classical construction problems. If these
proofs seem easy today, just think of all the modern algebra we take for granted
that did not exist even two hundred years ago.

We begin by examining three classical construction problems, two of which
we can prove to be impossible using field theory. (The third depends on the
transcendence of n, whose proof would carry us too far afield.)

Next we consider the problem of constructing regular polygons, and give
Gauss’s proof of the constructibility of the regular 17-sided polygon.

In Section 30 we consider constructions made with an additional tool, the
marked ruler. Using the marked ruler we show how to extract cube roots and
trisect angles. Then in Section 31 we study the real roots of cubic and quartic
equations, and show that the constructions with compass and marked ruler are
equivalent to solutions of quadratic, cubic, and quartic equations.

241
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In an appendix Section 32 we collect, mostly without proof, the results from
field theory that we use in the earlier sections of this chapter.
In this chapter we work always over a subfield of the real numbers IR.

28 Three Famous Problems

In this section we will discuss three classical construction problems via field
theory. Recall (13.2) that a point with coordinates (o, ff) in the real Cartesian
plane can be constructed with ruler and compass if and only if the coordinates
o, i can be obtained from the initial data by a finite number of field operations
and extractions of square roots of positive quantities. If we suppose that the
initial data are given by rational numbers, then this is equivalent to saying that
o and ff are elements of the constructible field K (16.4.1), which is just the set of
those real numbers that can be obtained by a finite number of field operations
and square roots from @. We say that a real number « is constructible it it is an
element of K. So a point (x, f) in the real Cartesian plane is constructible by
ruler and compass tfrom the rational numbers if and only it « and f§ are con-
structible numbers.

For our applications we need some criteria to decide when a number is con-
structible. The first is merely a restatement of what we have just said.

Proposition 28.1
A real number o € R is constructible if and only if there is a tower of subfields of R,

Q=Fchc --cFck

such that o € Fy, and each F; = Fy_,(\/a;) for some a; € F;_;.

Proof In writing a as obtained by a finite number of field operations and square
roots, each time there is a square root, let F; be the field generated by that
square root over the previously constructed field. Conversely, if « € Fy, then by
construction it is written using field operations and square roots.

Corollary 28.2
If o € IR is constructible, then deg Q(2)/Q is a power of 2.

Proof Here we use the notion of the degree of a field extension (32.1). Adjoin-
ing a square root of an element that is not already a square creates a field ex-
tension of degree 2. So, assuming that the extensions in (28.1) are all nontrivial,
we find that deg F./Q = 2*. Since @ < Q(x) < F;, by multiplicativity of degrees
of field extensions (32.1) we see that deg Q(«)/®Q is a power of 2.
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Remark 28.2.1

This simple statement is already enough to dispose of two of the three classical
construction problems. Beware, however! The converse of this statement is false
(28.7.1).

Duplication of the Cube

The problem is, given a cube, to construct a new cube whose volume is twice
the volume of the old cube. We will interpret the phrase “given a cube” to mean
that we are given its edge, as a line segment in the plane, and the problem is
then to construct the edge of the new cube. If the first cube has edge a, then we
are looking for a length b such that b* = 2a*. This means that b = \/_a If b is
constructible, then V2 is constructible, and conversely.

Theorem 28.3
V2 is not in K. Hence the duplication of the cube is not possible by ruler and
COMpass.

Proof Consider « = /2. It is a root of the equation x* — 2 = 0. The polynomial
x? — 2 is irreducible over @). Indeed if it factored, then at least one factor would
be linear, so it would have a root. Let this root be a/b with a,b € Z, a, b relatively
prime. Then

a* = 2b3.

It follows that a is even. Then 23|a®) so 22|b, so b is also even. This contradicts
the hypothesis that a and b were relatively prime.

Now, since x* — 2 is irreducible, the field Q(\/_) is an extension of degree 3
of @Q. Since 3 is not a power of 2, we conclude V2 2 ¢ K, by (28.2).

Trisection of the Angle

The problem is, given an angle in the plane, to construct by ruler and compass a
new angle equal to one-third of the given angle. This problem is a bit more
complicated because some angles can be trisected. For example, if the given
angle is a right angle, we can construct an angle equal to one-third of it (30°)
by first constructing an equilateral triangle (1.1) and then bisecting one of its
angles. See also Exercise 28.4.

We will show that the problem of trisecting the angle is not always possible
by exhibiting one angle that exists in the Cartesian plane Il over the con-
structible field K, namely an angle of 60°, whose third, an angle of 20°, does not
exist in I1. If an angle « exists in I1, then the trigonometric functions sin«, cos o,
tan o will be elements of the field K (Exercise 20.15).

Theorem 28.4
The real number o = cos 20° is not in K. Hence an angle of 60° cannot be trisected
by ruler and compass.
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Proof Using the sum angle formulas for sin and cos, we find for any angle
that

cos30 = 4cos® # — 3 cosd.

Since cos 60° = %, the real number o = cos 20° satisfies
1
40 — 30 =~
2
In other words, « is a root of the equation
- t—0
x? —3x——-=0.
2

We will show that this equation has no roots in K. Making the substitution
y = 2x, it is sufficient to show that the equation

y*—=3y—-1=0

has no roots in K.
First we show that it has no roots in @. If it did, let the root be a/b, with
a, b e Z, relatively prime. Then

a® —3ab? - b* = 0.

Consequently any prime factor p of a also divides b, and conversely, any prime
factor of b divides a. Since a, b are relatively prime, we conclude that a, b = +1,
so a/b = +1. But by inspection we see that neither +1 nor —1 is a root of the
equation.

Hence y* — 3y — 1 is an irreducible polynomial over @, since it is of degree
3 with no rational roots. We conclude that @(z) is an extension of degree 3 of @.
But if & were constructible, then Q(z) would have degree a power of 2 over @
(28.2). We conclude that o ¢ K, so the angle of 20° is not constructible.

Squaring of the Circle

The problem is, given a circle, to construct by ruler and compass a square of
area equal to the area enclosed by the circle. If the circle has radius r, its area is
nr?, so we need a square of side a with a®> = ar?. Thus a = /7 - . If a were con-
structible from r, then /7, and hence = would be constructible.

Theorem 28.5
7 ¢ K, so the problem of squaring the civcle cannot be solved by vuler and compass.

The fact that = ¢ K is a consequence of the stronger fact that = is transcen-
dental over @): There is no polynomial with rational coefficients having n as a
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root. But every element of K is algebraic over @. The proof that n is transcen-
dental is analytic, so we will not give it here. See, for example, Stewart (1989),
Chapter 6. See also Section 25 for further discussion of this problem and its his-
tory. And see (42.4.1) for a surprise: In the hyperbolic plane, some circles can be
squared!

Up to here we have used only the necessary condition (28.2) for a number to
be constructible. Using a little more field theory, we will now derive a necessary
and sufficient condition for a real number to be constructible. It depends on a
remarkable coincidence of three separate notions: adjoining square roots, solv-
ing quadratic equations, and making field extensions of degree 2.

Proposition 28.6
Let F € E be an extension of fields of characteristic not equal to 2. Then the following
conditions are equivalent:

(i) E = F(y/a) for some ae F, \Ja ¢ F.
(ii) degE/F = 2.
(ili) E = F(a), where o is a root of an irreducible quadratic polynomial over F.

Proof (i) = (ii). If E = F(y/a), then every element of E can be written uniquely
in the form ¢ + ezv/a, ¢1,¢2 € F, so deg E/F = 2.

(ii) = (iii). If deg E/F = 2, and if « € E is any element not in F, then 1,2, o*
are linearly dependent, so o satisfies an irreducible quadratic equation with co-
efficients in F.

(iii) = (i). Follows from the quadratic formula: The roots of the equation
ax* + bx+c = 0 are given by « = (1/2a)(—b + Vb? — dac).

Remark 28.6.1
This is indeed an elementary result, but we thought it worth stating explicitly
because of the contrast with what happens in higher degrees—cf. Exercise 28.5
and Section 31.

Proposition 28.7

A real number o is constructible if and only if the Galois group of its minimal poly-
nomial is a group of order 2" for some n.

Proof Suppose o is constructible. Then there is a tower of fields

Q=FcCFc --cFKckR

as in (28.1). For any isomorphism ¢ : Fy — F’ to a subfield F' of €, F' will also be
the top of a similar tower
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Q=FycoF)coF:)c - ca(F) =F.

Hence every element of F’ can be obtained by field operations and succes-
sive square roots. The subfield F of € generated by the fields a(F}) for all pos-
sible such ¢ is then a normal extension of @, whose degree over @ is a power
of 2.

Now, if % is an element of Fj with minimal polynomial f(x), then all the
conjugates of « lie in the various fields a(F}), so the splitting field E of f(x) will
be a subfield of F. Hence also the degree of E/@Q, which is equal to the order of
the Galois group G of f(x), is a power of 2.

Conversely, let 2 € R, and assume that the Galois group G of its minimal
polynomial has order a power of 2. An elementary result in group theory states
that the center of a p-group is nontrivial (see, e.g., Herstein (1975), p. 86). Hence
G has a normal subgroup G, of order 2. Applying the same argument to G/G,;
and continuing, we find that there is a chain of subgroups

{e}=GrcsGisGrs - SGn=G

where each G; is normal in G, and G;/G;_; has order 2.
By the fundamental theorem of Galois theory (32.4), if we denote by E the
splitting field of the minimal polynomial f(x) of o, there is a chain of fields

Q=EDEE1§"' cE,=EcC

with each E;/E;,_; of degree 2, and each E; is a normal extension of @. Let
F; = E;NR. Then we have

Q=F,cF cF,c--cF=ENR.

Now, each E; is normal over @, so complex conjugation t acts on E;, with fixed
field F;. Hence degE;/F; =1 or 2 for each i. More precisely, if k is the largest
index for which E; = R, then F, = E; for i < k; Fy = Fj..1, and deg E;/F, = 2 for
all i > k. In particular, deg F,/F,_; is equal to 2 for all i excepti= k+ 1, in which
case it is 1. By (28.6), Fi = F,_,(\/a;) for some a, € F,_,. Furthermore « € F, =
ENIR, so a is constructible.

Example 28.7.1

For z € R to be constructible, it is not sufficient that deg®(x)/Q be a power
of 2. Take, for example, the polynomial f(x) = x* — x* — 5x% + 1. A little curve-
sketching from first-vear calculus shows that it has four distinct real roots. Let
o be one of them. It is shown in (32.5.1) that f(x) is irreducible, and that its
Galois group has order 12 or 24. Hence deg Q(x)/@Q = 4, but by (28.7), « is not
constructible.
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Exercises

28.1 A parabola I' can be defined as the
locus of points P equidistant from a F
fixed point F, the focus, and a fixed
line [, the directrix.

(a) If the focus is (0,1) and the direc- T
trix is y = —1, find the equation of the

parabola.

(b) If y=mx+b is a line with 0

m,b e K (the constructible field) and
b = 0, show that the two intersection
points of the line with I" have coor-
dinates in K.

(¢) Now give a ruler and compass construction for the intersection points of a line

m with the parabola having focus F and directrix l. (Par = 9 to get one point.) Thus,

even though we cannot “draw” the parabola, yet we can find its intersection points

with any line, as if it were drawn.

28.2 In the real Cartesian plane:

(a) Show that the circle with center (a, 1) passing through the origin intersects the
3 3

parabola I' given by y = 1x? at the point (2Va, 2v/ a?).

(b) Show that if we are given a single parabola drawn in the plane, then the prob-

lem of duplication of the cube becomes possible.

(c) If a parabola is given by its focus and directrix, conclude that its intersection

points with a circle are not always constructible.

28.7

Lo

Squaring the parabola. Let a parabola
be given by its focus F and directrix 1
(as in Exercise 28.1), and let another
line m be given in the plane. Prove
that it is possible to construct with
ruler and compass a square whose
area is equal to the area bounded by
the line and the parabola. (You need
not find the construction: Just prove
that it is possible.)

28.4 In the real Cartesian plane, if we are given an angle « of radian measure 2na/b
with a,b e Z, and b not divisible by 3, show that it is possible to construct an angle
L starting from the given angle.

28.5 (a) Sketch the graph of y = x* —3x — 1 in the real Cartesian plane, and use the
intermediate value theorem to show that it has three real roots.




248 6. Construction Problems and Field Extensions

(b) If & is one of the roots of x* — 3x — 1, show that the field ©Q(«) is not equal to a
. . . 3 N . . . .

field of the form Q{+/d) for any d € Q. Thus a field extension of degree 3 need not
be generated by cube roots, in contrast to the situation in degree 2 (Proposition
28.6).

(c¢) However, one can express roots of this equation using square roots and cube
roots of complex numbers: Verify that

VR W
D(ZVE-FE\/—_S. Vz—z\/—_S

is a root of the above equation. Hint: Of course you could substitute directly in the
equation and multiply out, but using a little geometry you should be able to show
without any messy calculation that o is a root of this equation.

28.6 Let o = cos20°. Show that « is totally real and « + 1 is totally positive in the sense
of Exercise 16.10. Find an explicit representation of « + 1 as a sum of squares in
the field Q(z) —ct. Artin's theorem (Exercise 16.12).

¢ v 15!

28.7 Instead of using trigonometry, as in ¥
the text, one can also use geometry to P‘
obtain a cubic equation expressing the
trisection of an angle. Let an angle 0}\
o = AOB be given in a circle of radius
1, and let the length of AB be a. Sup- o
pose o can be trisected by OC, OD. Let
x¥ = length AC. Show that AACE and
AQEF are both similar to AOAC. From
this derive a cubic equation for x in
terms of a. If o = 60°, what eqguation
do you get?

\"\_\_’/

28.8 Prove a theorem analogous to (Theorem 13.2) for constructions with Hilbert's tools
(Section 10): Given a number of points P, including (0,0) and (1,0) in the real
Cartesian plane, a new point Q = (o, f) can be constructed with Hilbert's tools from
the initial points if’ and only if 2 and f can be obtained from the coordinates of
the initial points by a finite number of field operations +, —, -, +, and operations
a— V1 +a’

28.9 Conclude from Exercise 28.8 that a point Q = (2, ) is constructible with Hilbert's
tools from the rational numbers if and only if its coordinates o, ff are in Hilbert's
field Q (Proposition 16.3). Using Exercise 16.14 this is also equivalent to saying that
%, fi are constructible and totally real.

28.10 (a) Show that cos 72" and sin72° are totally real, and conclude that it is possible to
construct a regular pentagon with Hilbert's tools.
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28.11

28.12

28.13

28.14

28.15

(b) Given a segment OA in the plane, construct with Hilbert's tools a regular pen-
tagon inscribed in the circle with center O and radius OA (but without drawing the
circle!).

Show that it is not possible with Hilbert's tools to construct a square with area equal
to a given equilateral triangle. (Of course, it is possible with ruler and compass by
(11.14).)

(Origami) In the traditional art of paper folding, vou start with a square piece of
paper. Consider the corners and the edges to be given. You get new points and
lines as images of previously constructed points and lines by the following three
operations (the "restricted” rules of origami):

(1) Make a fold passing through two given points.
(2) Make a fold that places one known point on another known point.
(3) Make a fold that places a known line on another known line.

If we consider the original paper to be the unit square [0, 1] x [0, 1], show that the
points obtainable by these rules are the same as those constructed by Hilbert's
tools, namely points with coordinates in Hilbert's field Q (Proposition 16.3).

In practice, most origami constructions make use of a fourth rule (the “general”
rules of origami), namely:

(4) Make a fold through a given point that places another given point on a given
line.

Show that with the general rules, we obtain all points with constructible coordinates
(Proposition 16.4).

Fold a piece of origami paper into an f
equilateral triangle as follows, and ex- [
plain why it works.

(==

Fold A to B, get C. - 1—
2. Fold B to C, get line d. l .
3. Fold A to d, passing through C, get - ;
E. / l
4. Fold CB to CE, get F.
5. Fold EF. /

A C B

Fold a piece of origami paper into a regular pentagon, and explain why it works.
Hint: The side of an inscribed pentagon, with one side parallel to a side of the
paper will be 1 (/5 — 1). (About 10 folds.)
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28.16 For a real challenge, suppose that we Ve
are given two segments a,b on oppo- - /
site edges of the paper. Fold the trian- > l)
gle with sides 1, a, b. (About 10 folds.) @

28.17 The problem of Apollonius is, given r"
three circles I';, 'z, '3, to construct a r'l-
circle A that is tangent to all three. Let ( af,b; )
I'y have center (a;, b;) and radius r,. If .
we assume that A is in between the I, ~ (G2,b:)
as in the figure, and has unknown
center (x, y) and radius r, we obtain / 1
equations H

dist((x, y), (ai, b)) =7+ 7, \ /

for i =1,2,3. Show that these equa- N

tions can be solved for x, y,r using ~ =

field operations and square roots.

Thus the problem is solvable by ruler C

and compass. (For an actual construc- 3

tion, see Section 38). (G, fy}

29 The Regular 17-Sided Polygon

A regular polygon is a polygon with all sides equal and all angles equal. Euclid
knew how to construct regular polygons with n sides for n = 3 (L.1), n = 4 (1.46),
n=>5(IV.11), n =6 (IV.15), and n = 15 (IV.16). By bisecting the central angles,
one can construct a regular polygon of 2n sides, given one of n sides. Thus Euclid
could construct regular polygons of n sides for n = 2%, 2%.3, 2.5 2%.3.5. For
two thousand years these were the only known constructible regular polygons
until Carl Friedrich Gauss in 1796, at the age of 19, made the remarkable dis-
covery that the regular polygon of 17 sides is constructible with ruler and com-
pass. He was so proud of this result that he requested that a regular 17-gon bhe
inscribed on his tombstone.
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In this section we will explain Gauss's method using the algebra of complex
numbers. We start with a proof of the construction of the regular pentagon, and
finish with a criterion for constructibility of regular n-gons.

Our first step is to represent points

of the real Cartesian plane by complex N C
numbers. To the point (a,b) we associ-
ate the complex number z = a + bi. If { 'S'

is a point on the unit circle making an
angle # with the positive real axis, then
we can write 6‘

\ o T

If @ = 2nk/n for some integers k, n, then according to the laws of multiplication
of complex numbers, " = 1. In other words, { is a complex root of the equation
x" —1=0. Letting k = 0,1,...,n — 1, we obtain n distinct roots of this equation,
so these are all the roots. They are called the nth roots of unity.

To construct a regular polygon of n sides, it is sufficient to construct the
quantity cos2zn/n, and hence also sin2z/n. Since the complex number { =
cos 2x/n + isin 2z/n is then an nth root of unity, the constructibility of the regu-
lar n-gon in the real Cartesian plane is related to the solutions of the equation
x" —1 = 0 in the complex numbers.

Let us illustrate this situation by
considering the case n=>5. Take l = N Y
2n/5, and let { = cos 2n/5 + isin 2n/5 be
the complex number that corresponds
to the first vertex of the pentagon after
1. Then the five vertices of the pentagon
will be 1,¢,02,8%, ¢ Note that {* = ¢}
is the complex conjugate of {. Therefore,

{ =cosl+isind.

1

{+ " =2cos2m/5.

0
x> — 1. This polynomial factors as L%

Wv/"\\—d

On the other hand, { is a root of

—l=x-DE'"+x2+x*+x+1).

Since { # 1, it is a root of the second factor, which is called the cyclotomic poly-
nomial ®s (cf. Section 32). Let o = { +{*. Then (remembering that {* = 1)

=24 2405
Hence

o=+ C+C++2=1,
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using the relation ®5({) = 0. So o is a root of the polynomial
X +x—1=0.

Using the quadratic formula,
1
x=o(-1 4 V5).
Since our « is a positive real number, we conclude that o = ]E(\/E —1). Hence:

Proposition 29.1
cos 2m/5 = 1 (v/5 - 1).

Remark 29.1.1
This gives another algebraic proof of Euclid's construction of the regular penta-
gon (IV.11). Compare (13.4) and (13.5).

Now let us turn our attention to the regular 17-gon.

Theorem 29.2 (Gauss)
The regular 17-sided polygon is constructible with ruler and compass.

Proof An abstract proof of constructibility can be given using Galois theory
(29.3.1). Here, however, we will give an elementary constructive proof, close to
Gauss's original method.

We follow the general idea of the method used above with the pentagon.
Let

¢ =cos2rn/17 +isin2n/17.

Let
a=0+07,
B=C+0+ M+,
=+ OO T T R

We will show that

Q=Q@) = Qf) = Qn),

and each field is quadratic over the previous one. Since o = 2 cos 2z/17, this will
show that the regular 17-gon is constructible.
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(At this point, you may ask, where did these expressions for o, f,y come
from? Here are three possible answers: 1. Gauss was a genius. 2. Never mind
where they came from; just follow the proof and see that it works. 3. If you look
at the subgroups of order 2, 4, 8 of the Galois group of Q({), these are elements
that will be left fixed by them —see (29.3.1).)

Let us start with y. It is natural to consider also the element y’ that is the sum

of the other eight powers of {, namely
Y =C+C+C+ T+ O+
Since ¢ is a 17th root of unity, it is a root of the cyclotomic polynomial
Dy =x0 4 x5 4 a1
Thus y 4 3’ = —1 (remember to treat exponents of { (mod 17), since {'” = 1). We
will show that yy’ is also in @, so that p, which is a root of the equation
X2 = (y 4y x4+ =0,

will be quadratic over @).

To find yy’ we must make a computation. Multiplying each term of y' by
each term of y, we obtain the sum of { raised to each of the powers shown in

the accompanying table. Observe that each integer 1 <1< 16 (mod 17) occurs
exactly four times in the table. Thus

16
' = 4( C*) = —4.
i=1

Table of exponents of yy’

4 6 7 8 —2 —4 —5 —6
5 7 8 9 -1 -3 —4 —5
7 9 10 11 1 -1 -2 —3
11 13 14 15 5 3 2 1
2 4 5 6 —4 —6 -7 -8
1 3 5 -5 -7 —5 -9
-1 1 2 3 -7 -9 —10 —11
-5 -3 —2 -1 —11 —13 —14 —15

So y is a root of the equation
X2 4+x—4=0.

Using the quadratic formula, we obtain

X=%{—1 + V17).
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To choose the correct sign for y, we
make an estimate. Note that in the sum
for p, the imaginary parts cancel, so y is
real. In fact,

o 1
b >,
y = 2(cos2n/17 + cos4n/17 N T
+ cos8m/17 + cos 16m/17). § Tl
Now looking at the approximate posi- q
tion of the powers ¢, et CB, it is clear 1t
that y is positive. Therefore, v v
H1 1Y
e i

y = %(—1 - \/ﬁ)

We can also confirm this choice of sign with a calculator by evaluating the sum
of cosines above and the expression with the radical. Both come to 1.56155 to
five decimal places. Note, however, that the calculator check does not prove the
equality: It is merely a good way to detect errors in our work.

Next we consider ff. If we let

B=C+0+2+8,

then § + ' = y. On the other hand, ' turns out to be the sum of all the non-
zero powers of {, so ' = —1. Thus f is a root of the equation

X2 —px—1=0.
By the quadratic formula,

1
x=s0 £ y: +4).

Since [ is positive, we choose the + sign, and obtain
1 -
B=50r+ vy +4).
Substituting for y and simplifying gives

1
= ;1-(—1 + V17 + v/ 34 —2\/17).

p
Note also that by definition,
B = 2(cos2n /17 + cos 8xn/17).

Both check with a calculator to give f = 2.04948 (to 5 decimals).
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Now let us look at the field extensions created so far. Clearly, Q(y) =

©(/17). We claim that Q(f) = Q(w 34 — Zm), which contains Q(y). It is clear

that

Q) = (V17 + V34 - 2v17).

If we let
X =17 + /34 — 24/17,

then squaring twice to get rid of radicals gives the equation
xt—6-17x* +8-17x+ 1317 = 0.

By Eisenstein’s criterion (32.8) this is irreducible, so the degree of the field
extension Q(f)/Q is four. Since f is clearly contained in the field
Q( 34 — 2\/17), which has degree at most four, we conclude that Q(f) =

)] (m) , as claimed.

Next let us conside «. Let

o =4
Then
ot =f
and
ao' =3+

Let us denote oo’ by f”, and let
B =0+ 0+
Then
pr+ =y

and
16

ﬁnﬁr.r.r _ ZL:I — 1.
i=1
Thus B” is a root of the equation

¥ —yx—1=0.

A calculation similar to the one used for f then gives

B =i(—1 V17 + 34+2\/ﬁ).
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Note that

V34 — 2417 - /34 4+ 217 = V342 — 4. 17 = 8/17.
Therefore, 8" € Q(\/u ) ) Q(p).

Now « satisfies the equation
X —pfx+p"=0

so o is quadratic over @Q(f). Using the quadratic formula, substituting, and
choosing the sign correctly, we obtain

o = 2cos2nf17
=1 (—1 +\/17+\/34—2\/17+2\/17+3\/17+ \/170—26\/17—4\/34+2\/17).

This checks by calculator, giving o« = 1.86494. In particular, this shows that « is a
constructible number, and hence the regular 17-gon is constructible by ruler and
compass.

Although we have just completed the proof of the theorem, we have not yet
shown that Q(f) < Q(«) as claimed earlier. To do this, write o = {+ ' and
then compute

NG e

RN GO SN SR TN e

w—dl

Therefore, ff, which was defined to be { + {* +¢~' 4+ (™%, can be obtained as

B=ot a0 +a+ 2.
Therefore, ff € Q(x), as required.

Corollary 29.3
The side of the regular 17-gon inscribed in the unit circle s

1
4—}\/34—\/1 — /34 - 21 —z\/17+3\/17+ V170 — 26117 — 4+/34 + 24/17.

Proof Use (13.3) and the expression for « above.

Remark 29.3.1

If we wish to show only that the regular 17-gon is constructible, without an ex-
plicit formula for cos2n/17, we can proceed as follows. The question is whether
o = 2cos2rn/17 is a constructible real number. Now, « is contained in the field
Q(¢) of 17th roots of unity. By (32.7) this is a normal extension of @ of degree 16
and with Galois group Z|,, which is cyclic of degree 16. Therefore, the Galois
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group of the splitting field of the extension Q(x) will be a quotient of this one,
and its order will be a power of 2. By (28.7) therefore, & is constructible.

The proof of (29.2) given above actually illustrates the proof of (28.7) and at
the same time gives a nice example of the fundamental theorem of Galois
theory (32.4) by showing the correspondence between the subgroups of the
Galois group and the subfields of the field. For inside the group Z;, we have a
chain of subgroups

{1,-1} = {1,-1,4,-4} = {1,2,4,8,-1,-2,—4, -8}

The fixed fields of these subgroups are precisely Q(a), Q(f), and Q(y). And of
course, it was these subgroups of Z; that provided the motivation for choosing
o, f5, v the way we did.

Remark 29.3.2

The explicit expressions for o, f, y found in the proof of (29.2) can without too
much difficulty be turned into an actual construction of the 17-gon. Here is a
particularly simple one:

S

foy "

e e

Let the circle with center O be given. Let OA and OB be two orthogonal radii.
Take OC = 14 OB. Let the circle CA meeet OB in D and E. Let the circle EA give F,
and let the circle DA give G. Take H the midpoint of BF, and let the circle HB
meet OA in J. Take K to be the midpoint of OG. Let the circle with center | and
radius OK meet OB in L. Then KL is the side of the inscribed 34-gon. See (Exer-
cise 29.4).
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Using the ideas of this section we can now obtain a complete determination
of the possible constructible regular n-gons.

Theorem 29.4
The regular polygon of n sides is constructible by vuler and compass if and only if n is
a number of the form

n=2"p...ps, t,5=0,

where the p; are distinct odd primes, each of which is a prime of the form

p=2%+1.

Proof For any integer n, let

{=cos2n/n+isin2n/n
and let
a=(+
Then
o = 2cos2n/n,
and ( is a root of the equation
¥ —ox+1=0

with coefficients in @(a). Therefore, deg@Q({)/Q(a) = 2. Since Q({) is the field
of nth roots of unity, it is a normal field extension of @ with Galois group Z;,
which is an abelian group of order ¢(n), the Euler g-function (32.7). Since the
Galois group is abelian, @Q(z) is a normal extension of @, and the orders of
the Galois groups of Q(z) and Q({) differ by 2. We conclude from (28.7) that the
regular n-gon is constructible if and only if the order of the Galois group of Q(¢),
which is ¢(n), is a power of 2.
Now let us write

n= Zi"pf' SpE

with distinct odd primes p;. Then

p(n) =2 pe (i — ).

In order for this to be a power of 2, we must have ¢ = 1 for each odd prime
occurring, and p; — 1 must be a power of 2, so

pi=2"+1.

One sees easily that in order for p; to be prime, it is necessary that t; be a power
of 2. Thus p; is of the form

p=22k+1

as required. This argument is reversible, and so the theorem is proved.
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Remark 29.4.1

Prime numbers of the form p = 22" + 1 were studied by Fermat, who hoped he
had discovered a formula for generating prime numbers. If we denote by Fj the
kth Fermat number 2% +1,then Fy = 3, F; = 5, F; = 17, F3 = 257, and Fy = 65537
are all primes. It is an open problem whether there are any further prime Fermat
numbers. As of this date (April 1999), F;. is known to be composite for 5 < k < 23,
80 F4, is the first unknown case.

Exercises

29.1 To illustrate that the square root of a complex number with constructible coordinates
also has constructible coordinates, write v/ 5 + 24/—5 in the form a + bi where a and
b are constructible real numbers in standard form (cf. Exercise 13.2).

29.2 Let { = cos2m/7 4+ isin2n/7, and let o = { + {71

(a) Find the minimal polynomial for o over @ (it is a cubic).

(b) Show that Q{{) contains a unique subfield E of degree 2 over Q. Find an integer
d for which E = Q(+/d).

29.3 An investigation of the Fermat number F,y. Using a hand calculator only, find
(a) How many digits does Fyy have in its decimal expansion?
(b) What are the first six digits of Fy,?
(c) What are the last six digits of F,?

In each case, explain your method, and include a discussion of your calculator's
round-oft error and how reliable you believe your answer to be.

29.4 (a) Carry out the construction of the 17-gon described in Remark 29.3.2 (par = 20
steps to get KL; 25 more to mark the vertices and draw the edges of the 17-gon).

(b) Prove that the construction works by showing (in the notation of the proof
of Theorem 29.2) that OD =1y, OG=f, OF =f", KL = «’. Then show that «' =
¢+ is equal to the side of the inscribed regular 34-gon.

29.5 1f a regular polygon of n sides is constructible with ruler and compass, show that it is
also constructible with Hilbert's tools.

30 Constructions with Compass and Marked
Ruler

Up to now we have studied the classical ruler and compass constructions of
Euclid's Elements. We have seen that there are some problems that cannot be
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solved by ruler and compass, such as the duplication of the cube (28.3), the tri-
section of the angle (28.4), or the construction of a regular 7-sided polygon
(29.4). Although Euclid uses only ruler and compass, other classical authors,
both betore and after Euclid, used a variety of other methods for more difficult
problems. Some used an auxiliary curve given in the plane, such as a parabola
(Exercise 28.2), the quadratrix (Section 25), or the conchoid of Nicomedes (later
in this section). As the theory of conic sections became more developed, espe-
cially in the work of Apollonius, problems were solved using intersections of
conics in the plane. New tools were invented, such as the marked ruler that
could slide to cut off a given distance between two curves. There was even a
classification of problems according to the methods needed for their solution
(though the geometers of that time were not in a position to prove that any
given problem belonged to a certain class). A planar problem was one that could
be solved with ruler and compass. A solid problem needed the use of conic sec-
tions, and a linear problem (not our meaning of the word!) was one that required
curves (which they called lines) of higher degree.

In this section we will study one of these methods, namely the use of the
marked ruler, and we will see that with its help we can trisect angles and extract
cube roots. As an application we give a construction of the regular heptagon (7-
sided polygon). We will also show that analytically, the use of the marked ruler
between lines corresponds to finding a root of a certain quartic equation. In the
next section we will discuss the associated field theory and show that the geo-
metrical use of the compass and marked ruler is equivalent to the algebraic
solution of cubic and quartic equations, and this in turn corresponds to the
“solid" problems in the ancient classification.

First let us make clear what the
marked ruler can do. You can make
two marks on the ruler corresponding
to a given distance, and then you can
slide the ruler along so that the marks
lie on two given lines, while at the same
time the ruler passes through a given
point.

In other words, given two lines [, m, given a distance d, and given a point O,
you can draw a line OAB with A € [, B € m, and such that AB = d. This will count
as one marked ruler step. Meanwhile, the ruler can still be used as an ordinary
ruler in the old sense.

Proposition 30.1
Using compass and marked ruler, it is possible to trisect any angle.

Proof Let AOB be the given angle. Drop a perpendicular AC from A to OB.
Draw a line [ through A parallel to OB. Now use the marked ruler to draw a line
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ODE such that De AC, E € |, and DE = 2A0. This line will be the trisector of the
original angle.

To see this, let F be the midpoint of DE, and let G be the midpoint of AE.
Then FG is perpendicular to AE, so by (SAS) the triangles EFG and AFG are
congruent. Now the new angle EOB = « is equal to / AEO by parallel lines and
to L EAF by congruent triangles. So / AFO = 2, since it is an exterior angle to
the triangle AEF.

But DE was constructed equal to 2ZAO, so AO = EF = AF. Hence the triangle
AOF is isosceles, and so /. AOD = 2x. Thus the original angle AOB is equal to 3z,
and « is one-third of it, as required.

A G €
T of t o 1
2ot E
24 b
x -
0] C B

Proposition 30.2
Given segments of lengths 1 and a, it is possible with compass and marked ruler to
construct a segment of length /a.

Proof Let AB be the given segment of length a. Using the segment of length 1,
choose b = 23*1 for suitable k such that b > a. Make an isosceles triangle ABC
with CA = CB = b, and extend CA to D with AD = b. Draw the line DB. Now use
the marked ruler to draw CEF with Ee€ DB and Fe AB and EF = b. Let BF = y.
Then /a = y/2%".

To see this, we first apply Menelaus's theorem (20.10) to the triangle ACF
and the transversal line DBE. Letting CE = x, starting with vertex A, and going
clockwise, it says that

This gives us
xy = 2ab.

Then we apply (I11.36) to the circle with center C and radius b, and the point
F outside, and the two chords FBA and FGH. Note that CG = b, so by subtrac-
tion, FG = x. Thus we obtain

y(y + a) = x(x + 2h).
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Eliminating x from our two equations we obtain

y* = dab?.

Substituting b = 2! we obtain

y?=2%. 4

Therefore, v/a = y/2? can be obtained from y by bisecting 2k times.

1%

Proposition 30.3

Let lines 1, m, a point O, and a segment of length d be given in the Cartesian plane
over a field F. Suppose OAB is a line with A €l, Be m, and AB = d. Then the coor-
dinates of A and B lie in a field F(x), where o is a voot of a quartic polynomial with

coefficients in F.

Proof By a linear change of coordi-
nates, we may assume that O = (0,0) is
the origin, and that [ is the line y = b,
tor some b. We consider the locus of all
points P such that OP cuts [ in a point Q
and PQ = d. This locus is called the con-
choid of Nicomedes. To find the line OAB
of the proposition is equivalent to find-
ing the intersection of the second line m
with the conchoid. This we will now do
analytically.

yzl

y?

3
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First we need to find the equation of the conchoid. Take an arbitrary line
y = ax through the origin. This line meets [ at the point Q = (b/a,b). Let P have
variable coordinates P = (x, y). Then the condition PQ = d gives

(x — bja)* + (y — b)* = d>.

But P also lies on the line y = ax. We use this equation to eliminate the variable
a from the equation: Substituting a = y/x and simplifying, we obtain the equa-
tion of the conchoid,

(¥ + y*)(y — b)* = d*y*

cl-

To find the intersection B of the conchoid with the line m, we substitute the
linear equation of m in the equation of the conchoid. This gives a quartic equa-
tion in x. If  is a root of that equation, the coordinates of B are then x = o, and y
is linear expression in «. From there we get the line OB and the coordinates of A.

Remark 30.3.1

It is clear trom this proposition that the use of the marked ruler is equivalent
to being given a single conchoid, drawn somewhere in the plane, and being
allowed to intersect it with lines. Indeed, by rigid motions and similarities, any
application of the marked ruler can be reduced to finding an intersection point
of the conchoid with a certain line.

As an application of the marked ruler, we will give the elegant construction,
due to Viete, of the regular heptagon. This he accomplished two hundred years
before Gauss, working within the tradition of Euclid, without the benefit of
modern algebra, but using only some simple algebraic manipulation of equations.

Problem 30.4
Given a circle and its center, to construct with compass and marked ruler a reg-
ular heptagon inscribed in the circle.
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OA get B.

Circle AO, get C, D.

Circle DO.

Circle, center O, radius CD, get E.
CE, get F (then OF = L 0A).

. Circle FC.

7. Line CGH, so that GH = FC.

8. Circle H, radius OA, get I, K.

9. Circle B, radius IK, get L, M.

10. Circle B, radius IM, get N, P.
11-17. Draw sides of heptagon BILNPMK.

Nk wn =

* O

265
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To see why this works, we will follow Viete's original proof, for which we
need two lemmas.

Lemma 30.5
Suppose we are given two isosceles triangles based on the same line, with equal sides,
and such that the vertex of one is in line with the side of the other, as shown. Then
the angle at E is three times the angle at A, and if we denote the bases by x, b, and the
side by r, then

X3 — 3xr? = brl.

Proof Let the angle at A be o. Then using (1.5) and (1.32) several times, we ob-
tain that the angles marked 1, 2, 3, are respectively o, 2o, and 3z.

D

x C b

For the relation between x, b, r, we draw the circle with center C and radius
¥, and drop perpendiculars BF and DG to the line ACE. Then AF = %x and
FG =1 (b +x), so by (V1.2) = (20.2), we get

y=%(b+x)

1
r 2?(

and so xy = r(b + x), where y = BD.
On the other hand, using (I11.36), from the point A, we obtain

Hy+7r)=AH -AK = (x —r)(x + 7).

Eliminating y from these two equations, we obtain
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X3 — 3xr? = br?

as required.

Remark 30.5.1

If we write the trigonometric functions cos« = x/2r and cos 3z = b/2r, then this
equation translates to cos3x = 4 cos® a — 3 coso. So we see that Viete knew the
equivalent of this triple angle formula, and could prove it geometrically.

Lemma 30.6
Suppose we are given a circle with center O, diameter AB, and a point H on the di-
ameter extended such that

HB-HA? = HO - OA%.

Let I be a point on the circle for which HI = OA. Then BI is a side of the inscvibed
regular heptagon.

Proof Let Q be the other intersection of the line HI with the circle. First we
will show that OQ is parallel to AL By (V1.2) = (20.2), it will be sufficient to show
that
HQ HO
HI ~ HA'
Using (111.36) we have HQ - HI = HB - HA. Therefore,
HQ HB-HA
HI ~  HIZ
But HI = OA, so using the hypothesis of the lemma, we obtain

HQ HB-HA HO
HI = 0A? ~—0A°

Thus OQ and AT are parallel, as claimed.
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Now let the angle at A be o. Then using (1.5) and (1.32) several times, we find
that the angles marked 1, 2, 3 in the diagram are respectively o, 2, 3z In par-
ticular, OQJ is an isosceles triangle whose base angles are three times the vertex
angle. It follows that the angle o is %(ZRA}, and so the angle BOI = 2ua is %(4&‘1)_
Thus BI is a side of the inscribed regular heptagon.

Proof of Construction of (30.4) Using these two lemmas, we can prove that the
construction gives a regular heptagon. If we add lines FG and CR, where R is the
midpoint of FA (dotted in the diagram), then we recognize triangles HGF and
FCR satisfying the conditions of (30.5). Let us fix OA = 1. Then OF = FR = L If §
is the midpoint of FR, then CS = i—\/i, because it is the altitude of the equilateral
triangle OAC. On the other hand, FS = 1, so by (1.47), we find that FC = 1/7. So
the cubic equation of {30.5) becomes

s_7,_ 7
37 27

To complete the proof that BI is a side of the regular heptagon, by (30.6), we
need to verify that HB- HA* = HO - OA%. Remembering that HF = x, we must

show that
4 +2 2 AN
x—=)-lx+=) ={x—=]-1".
3 3 3

A simple calculation reduces this to the cubic equation for x obtained from
(30.5). So the condition of (30.6) is satisfied, and we conclude that BI is a side of
the regular heptagon. The remaining steps of the construction merely identity
the other vertices of the heptagon.

Remark 30.6.1
In this construction, the marked ruler is used to insert the segment GH = FC
between a line and a circle. This is a stronger use of the marked ruler than what
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we described at the beginning of this section. However, since the function of this
step is to trisect the angle at F(Exercise 30.1), the construction could have been
accomplished using (30.1), where the marked ruler is used to insert a segment
between lines only, at the cost of a few extra steps.

For a more algebraic derivation of a construction of the heptagon, see Exer-
cise 30.3.

Exercises

30.1 Given an angle «, with vertex O, draw a circle of any radius, cutting the angle in A
and B. With the marked ruler draw a line BCD such that C lies on the circle, D lies
on the line OA extended, and CD = OA. Show that the angle at D is Lo

B

A

L T +

D o A

30.2 Construct a regular nonagon (9-sided polygon) using compass and marked ruler
(between lines only). (Par = 21 steps, including one marked ruler step.)

30.3 Derive a construction of the regular heptagon, independent of the method of Prob-
lem 30.4, as follows.
(a) Find a cubic equation with root cos 2r/7—cf. Exercise 29.2.

(b) Make a change of variables so that this equation is brought into the form
y?—3y—b=0, and so can be solved by trisecting a certain angle—cf. Theorem
28.4.

(c) Now construct the required angle, then use the marked ruler to trisect that angle
(Proposition 30.1), and thus make a construction for the regular heptagon using
compass and marked ruler (par = 28 steps).

30.4 Show that a regular 13-gon can be constructed with compass and marked ruler as
tollows.

(a) Find a cubic and a quadratic equation whose successive solution will give
cos 2 /13,

(b) Show that the cubic equation in (a) can be solved by trisecting a certain angle 6,
and find cos .
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30.5 Let AB be a given segment. Make ABM
a right angle, and ABN = 120°. With the
marked ruler, draw ACD cutting off a
segment CD = AB between the lines
BM and BN. Show that AC = v/Z - AB.

30.6 Here is another kind of neusis (sliding
ruler) used by Archimedes in his study
of the heptagon. Let ABCD be a unit
square with its diagonal BC. Rotate the

ruler around the point A until the areas
of the two triangles ABE and DFG are
equal. If CG = a show that —a satisfies
the equation of Exercise 29.2a. Con-
clude that a = 2 cos 2r/14.

30.7 Verity the following marked-ruler con-
struction of a regular pentagon on a
given segment AB. (Of course, here
the marked ruler is not necessary,
but it gives a particularly elegant
constructiorn.)

1. Circle AB.

2. Circle BA, get C, D.

3. Line CD.

*4. Line AEF so that EF = AB.
5. Circle FE, get G, H.

6-9. Draw pentagon ABHFG.

31 Cubic and Quartic Equations

Our purpose in this section is to investigate the roots of cubic and quartic equa-
tions, and to show that the use of the compass and marked ruler is equivalent to
finding successive real roots of such equations.
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In the quadratic case, there is a happy coincidence between solving qua-
dratic equations, adjoining square roots of field elements, and considering
degree-2 field extensions (28.6). For cubic and quartic equations, the situation is
more complicated. A real root of a cubic equation may not be expressible in
terms of cube roots (Exercise 28.5). A root of a quartic equation may give a
degree-4 field extension that has no intermediate degree-2 subfield, and so «
may not be expressible by square and fourth roots (32.5.1).

If we ignore questions of reality, it can be shown that arbitrary cubic and
gquartic equations can be solved by successive square roots and cube roots of
complex numbers. But since this is a course in geometry, we are interested in
what happens in the real Cartesian plane, and so we will be concerned with real
roots of these equations. We will show that real roots of cubic and quartic equa-
tions can be expressed by three types of field extensions of a subfield F < R:

(1) F(v/a) where ae F, a > 0.
(2) F(v/a) where a € F.
(3) F(cos %b‘) where cosf) € F.

Roughly speaking, we will say these equations can be solved by taking square
roots, cube roots, and trisecting angles. In this way we will see that solving cubic
and quartic equations is equivalent to the use of the compass and marked ruler.

It is a remarkable tribute to the wisdom of the Greek geometers that two of
the problems they highlighted, the duplication of the cube and the trisection of
the angle, provide precisely the tools needed for the solution of cubic and
guartic equations.

For the reader who is already curious about quintic polynomials, see Exer-
cise 31.5.

We begin our work with some equations we do know how to solve.
Throughout these discussions we fix a subfield F of the real numbers. We con-
sider polynomials with coefficients in F, and will be concerned with the field
extensions necessary to find roots. Of course, the equation x* —a = 0 can be
solved by x = \/a. Another type of equation we can solve by trisecting an angle.

Proposition 31.1
Suppose we are gwen an equation
¥ —3x—-b=0

with b e F and |b| < 2. Let 0 be an angle with cos @ = 5b. Then « = 2 cos ;0 is a root
of the equation.
Proof We have already encountered this equation twice before ((28.4) and

Exercise 30.3). It is a consequence of the trigonometric identity

cos 3y = 4 cos®y — 3 cosy,
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where we put 0 =3y, x = 2cosy, and b= 2cos 3. The restriction |b| <2 is
necessary to find a & with cos § = %b‘

To study a general cubic equation we will follow the method of Cardano.
First note that a general cubic

B 4ax?+bx+c=0

can be simplified by the substitution x = y — %a so as to eliminate the x? term.
So it will be sufficient to consider the equation

X+ px+qg=0.
We look for a solution of the form x = u + v, so we need
w4+ 3utv+ 3w+ v+ plu+v)+g=0.
This can be accomplished by setting p = —3uv and g = —u® — v3. Then

ud+03 = —{q,

3
uid = —(E) \
3]

so u” and v? are roots of the quadratic equation

3
yz +qy — (g) = 0.

We solve this by the quadratic formula to obtain

q q\' (p\
— 94 (T) 4 (P).
v=-32/(3)+(5)

Since u and v are the cube roots of these two values of iy, we get

e (e g | faY (P |4
SNCRCERNORGE

This is the so-called tormula of Cardano. In order for the roots to be real, we

2 3
need (g) -+ (g) = 0. Thus we have proved the following result:

Proposition 31.2
If (g/2)* + (p/3)® = 0, then a real voot of the equation x* + px + g = 0 can be found
by taking real square roots and cube roots.
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Remark 31.2.1

Although it appears that we need two cube roots, since p = —3uv, we have
v = —p/(3u), and so x = u — p/(3u) can be expressed using one square root and
one cube root.

Proposition 31.3
If (/2)* + (p/3)° < 0, then a real root of the equation x* + px + q = 0 can be found
by taking a square root and trisecting an angle.

Proof The hypothesis implies that p < 0, so we adjoin /—3p to our field and
make a change of variables x = %\H—sz, This gives the equation

23 —3z+b =0,
where

Now, our hypothesis (q/2)* + (p/3)* < 0 implies || < 2, so we can use (31.1) to
solve the equation by trisecting an angle.

Remark 31.3.1

The conditions (q/2)” 4 (p/3)” = 0 (resp. <0) of (31.2) and (31.3) are equivalent
to saying that the discriminant A is <0 (resp. >0)—cf. (Exercises 31.14, 31.15).
The case of (31.3) is called the casus irreducibilis of the cubic equation.

Proposition 31.4

If o is a veal voot of a quartic polynomial with coefficients in F, then o can be found
by first adjoining a real root of a cubic polynomial with coefficients in F (called the
cubic resolvent of the quartic equation), followed by successive real square roots.

Proof Here we follow Descartes's method. By a linear change of variables, we
may assume that there is no x* term, so the quartic polynomial has the form
¥ px? 4 gr+r=0.

If o is one real root, there must be another real root £ (since complex roots come
in pairs), so o and f§ are roots of a quadratic polynomial x* + ax + b, with a,b in
some real extension field of F. Then the quartic polynomial factors into

(% + ax + b)(x* — ax + ¢)
tor some ¢ € R. From this we obtain
p=hb+c—a?
q =a(c—b),

r = bc.
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Eliminating b and ¢ from these equations, we obtain

1 5
b=i(p+az—£) and a®+ 2pa’ + (p* — 4r)a® — ¢* = 0.

In other words, a? is a root of the cubic resolvent polynomial
y 4 2py’+ (p? - Ay —q* =0,

whose coefficients are in F.
Having found a?, which is a positive real root of this cubic equation, we can
then find a, b, and « by successive (real) square roots.

Theorem 31.5
Let F be a subfield of R and let o« € R, The following conditions are equivalent:

(i) There exists a tower of subfields
F=F,cFc - cFcR

with o € Fy, and for each i, F; is obtained from F,_; by adjoining an element
p. = fi, where either

(1) f=+a, withaeF,_,,a>0, or

(2) p=a, withaeF, ,, or

(3) B = cos 10, with cosf € F,_,.
(ii) There exists a tower of subfields

F=F,cF < ---cF,cR

with o € F,,, and each F; is obtained from F,_, by adjoining a root of a quadratic,
a cubic, or a quartic polynomial.

(iii) The quantity « can be constructed by compass and marked ruler (using the
marked ruler between lines only) from data with coordinates in F.

Proof (i) = (iii). The three types of extensions are constructible with compass
and marked ruler, the first by ordinary ruler and compass construction, the sec-
ond by (30.2), and the third by (30.1). (Note that cos € F does not necessarily
imply that the angle  can be realized by lines in the Cartesian plane over F. We
may have to make a quadratic extension to obtain sin @ first, before we have an
actual angle to trisect.

(iii) = (ii). Regular ruler and compass constructions correspond to quadratic
equations, and each use of the marked ruler between lines can be accomplished
by solving a quartic equation (30.3).

(ii) = (i). A quartic polynomial can be reduced to cubic and quadratic equa-
tions by (31.4), and cubic and quadratic polynomials can be solved by the three
types of extensions listed, by (31.2) and (31.3).
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Corollary 31.6
If the quantity = € R is constructible by compass and marked ruler (used between
lines only) from data in the field F, then deg F(a)/F is 273° for some r,s = 0.

Proof Since F(a) < Fy, of (i) in the theorem, and each of the indicated exten-
sions is of degree 2 or 3, it follows that deg F}./F, and hence also deg F(«)/F, is of
the form 273 for some r,s = 0.

In fact, a stronger result is true.

Proposition 31.7

The quantity « € IR is constructible by compass and marked ruler (used between lines
only) from data in the field F if and only if the Galois group of the minimal poly-
nomial of o over F has ovder 243% for some a, b = 0.

Proof If « is so constructible, they by (31.6) the field F(a«) has degree 273% over
F, for some r,s = 0. The same will be true for all the conjugates of «, and these
generate the splitting field, so the degree of the splitting field, which is also the
order of the Galois group, will be 2#3% for some a, b = 0.

Conversely, suppose the order of the Galois group G is 293”. We apply the
theorem of Burnside (see Hall (1959), Theorem 9.3.2) that any group of order
pq" is solvable to conclude that G is solvable. This means that there is a chain of
subgroups, each one a normal subgroup of the next, such that all the quotients
are cyclic groups of prime order. To continue the proof, we need a lemma.

Lemma 31.8
Let G be a solvable finite group and let T be a subgroup of order 2. Then there exists a
chain of subgroups

T=G G, =G, =G

such that for each i, the index of G; in G, is a prime number.

Proof We proceed by induction on the order of G, the case G = T being trivial.

Since G is solvable, it has a normal subgroup H of some prime index p. If
T = H, we can apply the induction hypothesis to H (since any subgroup of a
solvable group is solvable), and then we are done.

So suppose TZH. Let T = {e, t}, where 7 is an element of order 2. Then G/H
has an element of order 2, so p = 2. Since H is also solvable, it has a normal
subgroup K of prime index g. Since H is normal in G, conjugation by t will send
K to a normal subgroup K* = tKt~! of H.

Case 1 1If K* = K, then TK is a subgroup of G, and K will have index 2 in TK.
Hence TK has index g in G, and we can apply the induction hypothesis to TK,
concluding the proot as before.
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Case 2 It K" # K, let L = KNK*. Then L is a normal subgroup of H and the
quotient H/L is isomorphic to the direct product H/K x H/KT, which is abelian
of order g*. Let o € K generate K/L. Then ¢ = ror~! will generate K*/L. Let M
be the subgroup of H generated by L and p = agg”. Now,

pT=0c"c =00 = p (modL),

so M" = M. Since H/L is abelian, M will be a normal subgroup of H of index ¢,
and we are reduced to the situation of Case 1.

Proof of 31.7, continued We apply the lemma to the Galois group G, taking T to
be the subgroup generated by complex conjugation . Then the fixed field E of T
is the intersection of the splitting field with the real numbers. Now o € E, and by
the fundamental theorem of Galois theory (32.4), the chain of subgroups G; will
give a chain of field extensions

F=E,€cE, 1€ -- €SE =E

where each field has degree 2 or 3 over the previous one. So x can be obtained
by finding real roots of a succession of quadratic and cubic polynomials, and so
by (31.5) is constructible with compass and marked ruler.

Remark 31.8.1

The condition of (31.6) is not sufficient for o to be constructible by compass and
marked ruler, because for example, « could be a root of a 6th-degree equation
with Galois group Sg, whose order is divisible by 5.

Corollary 31.9
A regular polygon of n sides can be constructed with compass and marked ruler
(between lines only) if and only if n is of the form

n=2%p .. .p, klI=0,
where the p; are distinct primes, each of the form

py = 2435 41,

Proof As in the proof of (29.4), each prime different from 2 or 3 must be of the
form

p=293"+1.
Conversely, if n is of this form, the Galois group will be abelian of order 2734

for some r, s, and the result follows from (31.7) (whose proof is much easier in
the abelian case).
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Remark 31.9.1

As Gleason (1988) has pointed out, since the Galois group is abelian, all the
polygons in (31.9) can be constructed with ruler, compass, and angle trisector.
Indeed, the marked ruler steps can be reduced to two kinds, extraction of a cube
root and angle trisection, and a real cube root has complex conjugates, which
would contribute a nonabelian factor S; to the Galois group.

Exercises

31.1 Show that it is not possible to construct a regular 11-gon with compass and marked
ruler.

31.2 Show that it is possible to construct a regular 19-gon with compass and marked
ruler.

31.3 Show that it is not possible to extract 5th roots with compass and marked ruler.

31.4 Show that it is not possible to quintisect (divide in 5) a general angle with compass
and marked ruler.

31.5 Suppose, in addition to the compass and marked ruler, we were given tools to
extract 5th roots and quintisect angles. Show that even with these new tools, it is
still not possible to solve a general fifth-degree equation. Hint: Show that the Galois
group of any extension obtained with these new tools is still solvable, and then take
a quintic equation with Galois group Ss, such as Example 32.4.4.

31.6 Verify that the following construction
using a parabola will trisect an angle.
Suppose we are given in the xy-plane
the parabola ' defined by y = x2.

Suppose we are also given an an-
gle AOB, with A lying on the unit cir-
cle and B = (1,0). Draw a vertical line 2 < /
through A to meet the line y = 2 at C.
Draw a circle with center C, passing
through the origin O, and let it meet
the parabola I' at D. Drop a perpen-
dicular DE from D to the x-axis. Draw . /
a circle with center E and radius 1 to A
meet the unit circle at F. Then / FOB /
will be one-third of the angle / AOB. /

™
"

S
™
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31.7

31.8

31.9

31.10

31.11

31.12

31.13

6. Construction Problems and Field Extensions

Show that the constructions one can accomplish given the fixed parabola y = x* in
the xy-plane, and being allowed to intersect it with lines and circles, are precisely
equivalent of those one can achieve with compass and marked ruler.

A

The problem of Alhazen. Given a cir-
cle I', and given two points A, B, find a
point C € I" such that the lines AC and r B
BC make equal angles with the circle. C

Show that this problem leads to a
quartic equation, and so can be solved
with marked ruler and compass.

In the proofs of Propositions 5-9 of his
book on spirals, Archimedes makes
use of the following construction:
Given a circle I', given a chord I, given
a point P on the circle, and given a
segment d, to draw a line through P
such that the segment AB cut off by
the line and the circle is equal to the
given segment d. This is not a legiti-
mate use of the marked ruler in the
limited sense we have considered.
Show, however, that:

(a) This construction can be made
with compass and marked ruler in our
SETISE.

(b) If I is perpendicular to the diameter of the circle passing through P, then the
construction is possible even with ruler and compass only.

Show that those cubic equations that can be solved with square roots and an angle
trisection are the equations with three real roots, while those equations needing
square roots plus a cube root are the equations with one real and two complex
roots.

If f(x) is an irreducible cubic equation over the field F = R with one real and two
complex roots, then its Galois group is S;.

We have seen (Theorem 28.4) that o= 2cos20” is a root of the equation
x3 — 3x — 1 = 0. Show that the other two roots of this equation are contained in the
field @Q(x), and so its Galois group is Zs.

You have probably seen ( Exercise 29.2) that « = 2cos 2r/7 is a root of the equation
x3 + x? — 2x — 1 = 0. Show that the other two roots of this equation are also in the
field Q(x), so that it is a normal extension with Galois group Zs. Note that in this
case, however, it is only after adjoining +/7 that we can express o using a trisection
of an angle.
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31.14

31.15

31.16

31.17

31.18

The discriminant. Let f(x) be an irreducible cubic polynomial with coefficients in
the field F = IR, and let its roots be o, 2,, o5 in its splitting field. We define the dis-
criminant of f(x) to be

A= (o — o) (o — o3) (o2 — 3) .
(a) Show that Ae F.

(b) Show that A > 0 if and only it f(x) has 3 real roots, while A < 0 if and only if
f(x) has one real and two complex roots.

(c) Show that the Galois group of f(x) is Z; if and only if VA e I} otherwise, it
is S_';.

If f(x) = x* + px + q, show that its discriminant is A = —4p* — 274%, as follows: Let
2 be one root. Then show that the remaining two roots of f(x) are roots of the gua-
dratic equation

4o+ (p+at)=0.

Solve this using the quadratic formula. Then put the three roots into the definition
of A (Exercise 31.14) and simplify.

Consider the equation x* — 3x — § = 0 over Q. If we take # such that cos = 4, then
o= 2cos 16 is a root, by Proposition 31.1. Show that in this case, the other two
roots of the equation are not contained in the field Q(e«), so the Galois group will be
;. Show that the splitting field of Q(z) is Q{a, v/5).

In this exercise we investigate when two different polynomials can give rise to the
same field extension. For simplicity let us consider an irreducible polynomial
f(x) = x* —3x — b over @. Let o be a root of this polynomial, and denote by A(a) its
discriminant.

(a) If fi is any other element of the field Q(x), f ¢ Q, show that A(f), the discrim-

inant of its minimal polynomial, satisfies

A(f) = Alw) - a®(f(c))”
for some a,c € Q. In particular, A(f) /A(2) is a square in @.

(b) If f(x) =x* — 3x— 1 with root 2, and g(x) =x* — 3x — { with root §, show that
A(f)/A«) is not a square, and hence Q(z) # Q{f).

(¢) Now let f{x) = x* — 3x — 1 have root « and g(x) = x* — 3x — 13/7 have root §. In
this case show that A(ff)/A(x) is a square, but nevertheless, Q) # Q(f). Hint: Use
the criterion of (a) to reduce to a certain cubic Diophantine equation over Z, and
show that it has no solutions.

Show that those construction problems that can be solved by intersecting arbitrary
conics in the plane—the so-called solid problems of the ancients—are exactly those
described in (Theorem 31.5).
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31.19 Given a unit square, find a point E on
AB extended such that the line CE
cuts off a segment EF equal to a given A

segment b. B ©
(a) Show that this marked ruler prob- /
lem gives rise to a quartic equation F

that can be solved with square roots b
only. Thus E can be constructed with

ruler and compass. C. D

(b) Find a ruler and compass con-
struction (par = 7).

32 Appendix: Finite Field Extensions

Our purpose in this section is to review the basic facts about finite field exten-
sions that we use in studying geometric constructions. For the most part we will
not give proofs, which can be found in any standard algebra textbook. If you are
learning this material for the first time, it may make sense simply to accept
these results and let their use in geometry provide some motivation before you
study their abstract algebraic proofs.

Field Extensions

When one field is contained in another, F < E, we can think of F as a subfield of
E, or we can think of E as an extension field of F, depending on the point of
view. For example, when we see @ < Q(y/2), the field of rational numbers @ is
more familiar, so we will think of Q(/2) as a field extension. Or when a field F
is given, and we are looking for an extension field E with some particular prop-
erty, we think of E as an extension field.

If F < E are two fields, and if oy,...,«, € E, then we denote by F(o,. .., o)
the smallest subfield of E that contains F and the elements oy, ..., %,. We call it
the subfield of E generated by the elements oy, ..., o, over F.

When one field is contained in another, F < E, we can regard the larger field
as a vector space over the smaller field. The dimension of this vector space is
called the degree of the field extension, written deg E/F.

Example 32.0.1
Every element of Q(y/2) can be written uniquely in the form a+ by/2
with a,be®. Thus Q(+/2) is a vector space of dimension 2 over @, so

deg Q(v2)/@Q = 2.
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A field extension may have infinite degree. For example, if @ is the set of all
algebraic numbers (those complex numbers that are roots of polynomial equa-
tions with coefficients in @), then deg ®/@Q is (countably) infinite. If R is the
real numbers, deg IR/Q) is (uncountably) infinite.

Proposition 32.1
If F € E < G are three fields, each contained in the next, then

deg G/F = (deg G/E) - (deg E/F).

Proof 1f oy,...,0, is a vector space basis for E over F, and if ff,,...,f,, is a
vector space basis for G over E, then {¢f[i =1,...,n;j=1,...,m} is a basis for
G over F.

Example 32.1.1

Consider @ = Q(v/2) = Q(v/2,/3). Adjoining a square root of an element that
was not already a square in a field makes a field extension of degree 2. We know
that /2 ¢ Q. We can also show that v/3 ¢Q(\/§) as follows. If V3 = a+ bv/2,
then

a? + 2aby/2 4 2b% = 3.

This equation takes place in Q(y/2), where each element is uniquely written as
¢ + dv/2. Hence

a’ +2b% = 3,
2ab = 0.

Thus a = 0 or b = 0, so either a? = 3 or 2b* = 3, both of which are impossible

in @Q. Hence v3 ¢ Q(v/2), so Q(v/2,/3) is an extension of degree 4 of Q. For a
basis, we can take the elements 1,1/2,+/3, /6. In other words, every element of

this last field can be written uniquely as a + bv/2 4 ¢v/3 + dv6, with a, b,c.d € @Q.
Roots of Polynomials

Let F be a field, and let
f(x) = apx" + ayx" ' + -+ +a,

be a polynomial with coefficients a; € F. A root of f means an element « in some
extension field E of F for which f(x) = 0.

Proposition 32.2

For any field F and any nonconstant polynomial f(x) there always exists an exten-
sion field E that contains a root o of f(x). If f(x) is irreducible of degree n, then the
degree of the field extension F(o)/F is n. If f(x) is irreducible, and if oy € E, and
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oy € E; are roots of f(x) in two extension fields of F (which may be the same), then
there is an isomorphism ¢ : F(o) — Flon) of the subfields of E,, E, generated by o,
oo, respectively, that sends oy to oy and leaves every element of F fixed.

This proposition is usually proved using an abstract field extension E con-
structed by taking the polynomial ring F[x] and dividing out by the ideal I gen-
erated by f(x). Since f(x) is irreducible, I will be a maximal ideal, and so the
quotient ring E = F[x] /I is a field. The image « € E of x € F[x] then becomes a root
of f(x).

In the case that will concern us most, polynomials with rational coefficients,
there is another, more concrete, way of finding roots. Since @ < C, the field of
complex numbers, and since every polynomial with complex coefficients has a
root in € (this is the so-called fundamental theorem of algebra, whose proof,
however, requires complex analysis), it follows that every polynomial
f(x) € Q[x] has a root in € (and sometimes even a root in R). So if we write v/2,
for example, it can be assumed that we are referring to the real number
V2 =1.414.... and not to some abstract element in some abstract field exten-
sion of @ in which the polynomial x? — 2 has a root.

Example 32.2.1

The polynomial x* — 2 is irreducible over @, since /2 is irrational, as was shown
by Euclid (X.117). It has a root /2 € R, so we can denote by Q(+/2) the subfield
of R consisting of all real numbers of the form a + by/2, with a,b e @Q. This is a
field extension of degree 2 of @, with 1,12 as a basis. Now, the polynomial
x? — 2 also has another root, —/2. The field extension generated by this root,
Q(—/2), is equal to Q(v/2). According to (32.2) there is an isomorphism (in this
case an automorphism) ¢ : Q(v/2) — Q(v/2) that leaves all rational numbers fixed
and sends v2 to —v/2. Indeed, you can verify that the map ¢ defined by
pla+bv2) = a—by2 is a field automorphism of Q(y/2), namely, it satisfies

(o + f) = 9(2) + ¢(f) and p(af) = ¢(2) - ¢(p) for all o, f € Q(v/2).

Example 32.2.2

For a slightly more complicated example, consider the polynomial x* — 2 over
@. It has a root V2 =1.2599... in IR, so we can consider the field Q(\VE). This is
an extension field of degree 3 of @, with basis 1, {/E, and /4. But the equation
x? — 2 also has a complex root w{/i, where @ = %(—1 + \/—_'3) is a cube root of
unity. This gives a different extension field Q(w\/i} of @ in which the poly-
nomial x* — 2 has a root. This is also an extension of degree 3 of @, with basis 1,
wv/2, w?y/4. According to the proposition, these two field extensions are iso-
morphic as field extensions of @, even though one is contained in R and the oth-
er is not. The isomorphism ¢ : Q(v/2) — Q(w/2) sends 1 — 1, V2 — w/2, and
Vi — 0?4
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Example 32.2.3
In some other cases we cannot write roots explicitly, but we can show that they
exist. Tty x*> — 5x — 1 for example. Substituting x = y + 1 gives

¥’ +5y" +10y* + 10y° — 5,

which is irreducible by Eisenstein's cri-
terion (32.8), so x* —5x — 1 is irreduc-
ible. A little elementary calculus shows
that the graph has a relative maximum 1y
at (—1,3) and a relative minimum at
(1,—5) and no other relative extremum.
Therefore, it has exactly 3 real roots
and 2 complex roots, though we cannot 11
write them explicitly. Nevertheless, the
roots exist. Say op,0z, o3 are the real t T | ‘,.1 |
roots and o4, o5 are the complex roots.
In this case the field extensions Q(z),
Q(aZ)a Q(j:?)\ Q(O(4)\ Q{G{.—,) are actually v i
five distinct subfields of €, three of i
which are contained in IR, and which ' '
are all isomorphic as field extensions of

@ (Exercise 32.7).

If instead of starting with the field F and the polynomial f(x), we start with a
field extension F = E and an element o € E, and if E is a finite field extension,
meaning deg E/F is finite, then o« will be algebraic over F, that is, there exists a
polynomial with coefficients in F of which « is a root. Indeed, if deg E/F = n, the
n+ 1 elements 1,a,%%,... 2" of E must be linearly dependent over F. In other
words, there are elements ay, ...,a, € F, not all 0, such that

ape" + a4 a, = 0.
Thus o is a root of the polynomial
f(x) = apx™ + arx™ ' + - + a,.

Once we know that there is some polynomial of which « is a root, we can find
one of minimal degree, and this is called the minimal polynomial of = (usually
normalized to have leading coefficient 1). If g(x) is the minimal polynomial of o,
then g(x) is necessarily irreducible, so by the previous proposition, deg F(«)/F =
degg(x).

Example 32.2.4

Take o = % V10 — 24/5 € R, for example, which is the side of the regular penta-
gon. Let us find its minimal polynomial. Set
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1
n= V10 — 24/5.
Sguaring,
4x* =10 — 2/5.
Regrouping,

2x% — 5= —/5.
Sguaring again,
4x* — 20x? 425 = 5.
So
xt—5x2+5=0.

This procedure produces for us a polynomial of which « is a root. In fact, run-
ning the same calculation backward shows that the four roots of this polynomial

are -_F% V10 + 24/5. To see whether this polynomial is the minimal polynomial
of o, we must decide whether it is irreducible. We first note that none of the four
roots is rational, so that the polynomial has no linear factor. If it had quadratic

factors, say
xt = 5x2 4+ 5 = (x* + ax + b)(x* + cx + d),

then from the absence of cubic and linear terms we obtain ¢ = —a and d = b.
Then

(x* + ax + b)(x* — ax + b) = x* + (2b — a*)x* + b?,
so we must have
2b—a’ = —5,
b* =5,

which is not possible for a, b € Q).
Therefore, x* — 5x% 4 5 is irreducible, and it is the minimal polynomial of o.
We could also have used Eisenstein's criterion (32.8) with p = 5.

Splitting Fields

Given a field F and a polynomial f(x) € F[x], one can always find a root « in
some extension field E as we have seen above. Then in the polynomial ring E[x]
one can factor out a linear factor, so f(x) = (x — a)g(x), where g(x) is a new
polynomial, of degree one less than f(x) and having coefficients in the new field
E.

Repeating this process, one can find a root of g(x) in some extension field of
E, and split oftf another linear factor. In this way, one eventually finds an exten-
sion field E' of F in which the polynomial f(x) splits into linear factors
fi(x) = c[[(x — &), where o1, ..., 0, are n = deg f(x) roots of f(x) in E', and c e F
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is a constant. Note that the «; need not all be distinct in general, although if f'is
irreducible and the characteristic of the field F is zero, they will be.

A splitting field for the polynomial f(x) over the field F is a field extension E
of F such that over E one can factor f(x) =c][[(x — o) as above, with ¢ e F,
o; € E, and furthermore, E = F(o,...,%,); in other words, the field E is minimal
with this property.

Proposition 32.3

Let a field F and a polynomial f(x) € F[x] be given. Then there exists a splitting field
for f(x) over F. Any two splitting fields are isomorphic as field extensions of F. If f(x)
is rreducible, if E is a splitting field for f(x) over F, and if «;,0; € E are any two
roots of f(x) in E, then there exists an automorphism ¢ : E — E leaving elements of F
fixed and sencding oy to os.

Example 32.3.1
If f(x) = x> — 2, the two roots are ++/2, and Q(+v/2) is a splitting field.

Example 32.3.2

If f(x)==x%-2, the roots are V2, w2, w?v2, so the splitting field is
Q(ﬁwﬂwzﬁ) It is easy to see that this field is the same as the field
Q({Vi, v/—3), which has degree 6 over Q. In general, as we see from the method
of constructing a splitting field, the splitting field of a polynomial of degree n
will have degree less than or equal to n!. In this case we have equality: 6 = 3.

Example 32.3.3
Let f(x) =x?—5x?+5 We saw earlier that the roots of this polynomial are

i% 10 + 24/5, so the splitting field will be Q(\/lO + 2\/5, \/10 - 2\/%) Since
V10 + 2v/5-4/10 — 2¢/5 = /80 = 44/5,
the splitting field is actually equal to @ (\f 10 + 2\/5), because this field already

contains /5. We saw earlier that this polynomial is irreducible, so the splitting
field has degree 4. This is an example where the degree of the splitting field is
considerably less than 4! = 24.

Example 32.3.4
For x%—5x —1, which we looked at earlier, the splitting field has degree
120 = 5! over @ (32.4.4).

Normal Extensions and Galois Groups

For this part, we will restrict our attention to fields of characteristic 0 for sim-
plicity, since in the applications to geometry we will be dealing mainly with
extension fields of @).
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A finite field extension E/F is called normal if it is equal to the splitting field
of some polynomial f(x) € Fx]. In this case we denote by G the group of all
automorphisms of E that leave elements of F fixed. G is called the Galois group of
the field extension E/F. Or if E is the splitting field of a polynomial f(x) € Fx], G
is also called the Galois group of the polynomial f(x). A normal extension E/F is
also sometimes called a Galois extension.

Theorem 32.4 (Fundamental theorem of Galois theory)
Let E/F be a normal field extension with Galois group G. Then

(a) The order of G is equal to the degree of the extension E/F.

(b) The only elements of E fixed under all elements of G are the elements of F.

(c) There is a 1-to-1 inclusion-reversing correspondence between subgroups H = G
and intermediary fields F < K € E given as follows: To a subgroup H € G we
associate the field E¥ of elements of E left fixed by all elements of H. Conversely,
to an intermediate field K we associate the subgroup H = G of those elements of G
that leave all elements of K fixed.

(d) Under the corvespondence just described, the subgroup H < G will be a normal
subgroup of G if and only if the associated field K is a normal extension of F, and
in that case the quotient group G/H is isomorphic to the Galois group of K/F.

Note that if f(x) is an irreducible polynomial of degree n over a field F of
characteristic 0, then its roots «,. .., o, are all distinct. Let E = F(ay, ... ,0,) be a
splitting field, and G its Galois group. For any root, say oy, the equation f(o;) =
0 must be preserved by any element of G. The coefficients of f are elements of
the base field F, so they are fixed by elements of G. Thus the image of «; by an
element of G must be another root of f(x), namely one of «y,.. ., oy. In this way

we see that an element of G permutes the set oy, ..., of the n roots of f(x).
Since E is generated by these roots, the action of an element of G is completely
determined hy its action on the ;. In this way we see that G can be regarded as
a subgroup of the symmetric group S, of all permutations of the set {«;,...,%,}.
Example 32.4.1

Consider the polynomial x* — 2 over @. Its splitting field is @(+/2). This is a
normal extension of @, and the Galois group consists of the identity and the au-
tomorphism ¢ that takes v/2 to —v/2. In this case G is equal to the symmetric

group S, which is isomorphic to Z, = Z/2Z.

Example 32.4.2

Consider x* —2 over @. First look at the field extension ©\/2. Any auto-
morphism of this field would have to take v/2 to another root of x* — 2. But the
other two roots are complex numbers, not contained in the field Q(&E) Thus
the only automorphism of this field is the identity. It follows from (32.4) that
Q({/E) is not a normal extension of @. Of course, we know that it is not the
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splitting field of the polynomial x* — 2, but this shows, assuming the result
(32.4a), that Q({/f) cannot be the splitting field of any polynomial over @).

The splitting field of x* — 2 is Q({{/E, \/—_'3), which has degree 6 over @.
Hence the Galois group will be equal to S3. There are three intermediate fields
of degree 3 over @, namely Q(v/2), Q(wv/2), and Q(w?v2). These correspond
to the three subgroups {e, (12)}, {e, (13)}, {e,(23)} of order 2 of S;. The field
@Q(+/-3), which is a normal extension of @, corresponds to the normal subgroup
Az = {e,(123),(132)} of S;.

Example 32.4.3
Consider again the polynomial x* — 5x% 4 5 over @). We saw that it is irreducible
with roots

o =110 +2¢/5,
az =1/10 — 24/5,
a3 = — /10 + 21/5,

ay = —1/10 - 2V/5.

We saw that the splitting field is Q(\f 10 + 2\/5), which has degree 4 over @).

Thus the Galois group G will be a subgroup of order 4 of the symmetric group
S4. Which subgroup of order 4 is it?
To investigate this question, we must describe explicitly the automorphisms

of the field E = Q(\flﬂ + Zﬁ) According to (32.3), there exists an element

o € G such that o(«;) = 3. Then o(2f) = o3, and since elements of Q are fixed, it
follows that ¢(1/5) = —/5. Now we make use of the identity x5, = /5. Apply-
ing o we obtain ¢(x;) - a(0z) = a(+v/5) = —/5. But a(2) = a3 by choice of g, so we
obtain oy - a(oy) = —+/5. From the equation oo, = /5 it follows that aloy) =
—oy = o3. Finally, a(oz) = a(—o1) = —0z = oty. Thus ¢ = (1234). So G is the sub-
group of S, generated by (1234), which is a cyclic group of order 4.

Perhaps tfrom this example it is already clear that the determination of the
splitting field of a polynomial and its Galois group is not a straightforward mat-
ter. It depends in each case on using some special information about that par-
ticular example, which may not be an easy task.

Example 32.4.4

Coming back to the example x* — 5x — 1 we studied earlier, let us see whether
we can determine the degree of its splitting field and its Galois group. The poly-
nomial is irreducible, so if we adjoin one root %, then Q(x) will be an extension
of degree 5 of @Q. Let E be the splitting field. Then @ = Q(x) < E. Therefore,
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deg E/@ is a multiple of 5. So the Galois group G will be a subgroup of S5, whose
order is a multiple of 5. Hence (from abstract group theory), G contains an ele-
ment of order 5. In Ss, the only elements of order 5 are the 5-cycles. Thus G
contains a 5-cycle. On the other hand, we saw earlier that f(x) has 3 real roots,
and hence two conjugate complex roots. Complex conjugation in € then induces
an automorphism of E that fixes the three real roots and permutes the two com-
plex roots. This is an element of G whose image in S5 is therefore a transposition
(a 2-cycle). Now, one can show (again using abstract group theory) that a sub-
group of Ss that contains a 5-cycle and a transposition must be the full symmet-
ric group. Hence G = Ss, and the degree of E/@ is 5! = 120.

Note the indirect nature of the reasoning, and how we were able to prove
that G = S5 without having any explicit representation of the roots of f(x).

Reduction mod p

A useful technique for obtaining information about the Galois group of a poly-
nomial with integer coefficients is the tollowing.

Proposition 32.5

Let f(x) be an trreducible monic polynomial with integer coefficients. Fix a prime p,
and assume that the polynomial f(x) with coefficients reduced (mod p) has distinct
roots in a splitting field E for f (x) over the prime field IF,. Then there is a 1-to-1 cor-
respondence between the roots of f(x) in its splitting field E over @ and the roots of

f(x) in E such that the Galois group of f over F,, considered as a group of permuta-
tions of the roots, corresponds to a subgroup of the Galois group of f over ().

Example 32.5.1
Consider the polynomial f(x) = x* — x* — 5x* + 1. It has no roots in @, because a
root would have to be an integer dividing 1, and neither +1 nor —1 is a root.
Reducing (mod 2), we obtain f(x) = x* 4+ x* + x> +1 = (x + 1)(x* + x+ 1). Note
that x* + x4 1 is irreducible because it has no roots modulo 2. It follows that
f(x) cannot be a product of two quadratic polynomials, because then f(x) would
be also. Thus f(x) is irreducible, and so 4 divides the order of the Galois group.
Now let us apply the proposition. The polynomial f (%) has distinct roots
(since the derivative of x* + x + 1 is nonzero), and its Galois group is cyclic of
order 3. We conclude from the proposition that the Galois group of f(x) contains
a 3-cycle. Hence its order is divisible by 3, and we see that the Galois group of
f(x) must have order 12 or 24.

Roots of Unity

We will examine in greater detail the Galois groups of the polynomials x" — 1
over @, since these are closely related to the question of constructing regular
polyvgons of n sides.
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If o = 27/n is an angle equal to one nth

of a complete rotation, then the com- v E_l

plex number 1_1.
= e = cosa + isina r

is an wnth root of unity. In fact,

l,C,L_"E, ..,C”'_l are the n roots of the 0 1

equation x" — 1 in the field € of com-
plex numbers. Among these we will
designate as primitive nth roots of unity
those that are not a dth root of unity for
any dn.

In other words, the primitive nth roots of unity are those powers (" of { for
which (r,n) = 1. The product

)= [[ -0

(r,)=1

is called the nth cyclotomic polynomial. From this description, it is not obvious
where its coefficients lie, but from the expression

() = (x" — IV [T @
dln

d#n

it follows inductively that @, has coefficients in @, and in fact (using Gauss's
lemma), coefficients in Z.

The degree of the polynomial ®,(x) is given by the Euler g-function: p(n) =
#{1 <r<n|(r,n) =1}

Proposition 32.6
For any n, the cyclotomic polynomial ®,,(x) is irreducible over @.

Example 32.6.1
The first few cyclotomic polynomials are
O =x-—-1,
By =x 41,
Oy = x>+ x+1,
By ="+ 1,
O =xt 43+ +x+1,
D =22 —x+1,
O =x"+ x4,

dg = x* 4 1.
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(However, do not conclude from this list that the coefficients are always +1:
There may be other integer coefficients.)

Let { = ¢¥™/" again. Since ®,, is irreducible, it will be the minimal polynomial
of {, and we find that degree of Q({)/Q is @(n), the Euler p-function. Further-
more, since the other roots of @,, are all powers of {, the splitting field of @, is
this same field Q({). From (32.3) we find that for each 1 <r < n with (r,n) =1,
there is an element ¢, of the Galois group G for which ¢ () = {". If we compose
two of these, we have ¢¢.({) = ¢,((") = {"*. Reducing rs (mod n) to t with
1 <t < n, it follows that g.p, = ¢,. In this way we see that the Galois group G is
isomorphic to the group of integers 1 < r < n relatively prime to n, under multi-
plication (mod n). This group is usually denoted by Z. The field Q({) is called
the nth cyclotomic extension of @, or the field of nth roots of unity. Summarizing,
we have the following proposition.

Proposition 32.7

The cyclotomic field of nth roots of unity Q({) is generated by { = ¢ . It has degree
p(n) over Q, and its Galois group is isomorphic to Z. In particular, if n is a prime
number p, then Q({) has degree p — 1, and its Galois group is Z;, which is a cyclic
group of order p— 1.

2mifn

Example 32.7.1
n=3. ®3 =x*+x+1. Its roots are ® =3(-1+4+/=3) and @* = (-1 - +/-3).
The cyclotomic field Q(w) is Q(v/—3), with Galois group isomorphic to Z,.

Example 32.7.2
n=4. &, = x> + 1. Roots are +i. The field is Q(i) with Galois group Z,.

Example 32.7.3
n=>5 &5 =x"+4+x* +x* + x + 1. The cyclotomic field is Q({), where

{ = e*™° = cos2r/5 + isin 27/5

—1(/5-1)+it/10+ 25,

The Galois group is isomorphic to Z,.

Example 32.7.4 .
#»3  #5 L

n=28. &g =x*+1. Its roots are {, {°, {°,

{7, where

Lf‘h
—f

; 2 2
2mif8 £_+_ 1\/_,_

P;E
: 2 2

The Galois group is Z;, which is
{1,2,5,7} under multiplication (mod 8).
This group is isomorphic to the Klein
four-group Z; x Z,.
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For reference we include the following useful criterion for a polynomial to
be irreducible.

Proposition 32.8 (Eisenstein)
Let

fix)=x"+ax" 1+ +a,

be a monic polynomial with integer coefficients a; € Z. Suppose for some prime num-
ber p, that p divides all the a;, and p* does not divide a,. Then f(x) is irreducible
over @Q.

Exercises

32.1 For each of the following real numbers, find the minimal polynomial over @ (be
sure to prove that it is irreducible), find the degree of the splitting field of the
polynomial, and determine the Galois group (up to isomorphism). Hint: Expect to
find groups of orders 2, 4, and 8.

(a) V2+ V2.
(b) V3 + V2.
(c) v3+2v2

In the following exercises, we will investigate the Galois group of a construction prob-
lem, defined as follows. For a construction problem in the real Euclidean plane IR?, start-
ing with data defined over @), the construction will create various points. Let F be the
field F = Q(f,,...,[f,,) obtained by adjoining the coordinates of all the points constructed.
Let E be the smallest normal field extension containing F, which can be obtained as fol-
lows. Let fi(x) be the minimal polynomial of f, i=1,...,m, let g(x) = [, fi(x), and
take E to be the splitting field of g(x). The Galois group G of E/@Q we will then call the
Galois group of the construction problem.

32.2 Given the unit segment A,B, where
A=1(0,0), B=(1,0), construct an
equilateral triangle with side AB. De-
termine the associated field F, the
normal field E, and the Galois group G
of the construction problem. Answer:

F=E=Q(V3).G=1Z,. A B

32.3 Construct a square with one corner at (0,0), with sides along the x- and y-axes, and
with area equal to the area of the triangle in Exercise 32.2. Find F, E, G as above.

32.4 Construct a regular pentagon inscribed in the unit circle having one vertex at (1, 0).
Find F, E, G as above.
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32.5

32.6

32.7

32.8

32.9

32.10

32.11

Construct an equilateral triangle with
one side on the x-axis, and with area
equal to twice the area of the triangle
in Exercise 32.2 above. Find F,E, G as
above. 2x

A 8

(a) Compute Pg, the ninth cyclotomic polynomial, and find the Galois group of the
cyclotomic field Q({) where { = ¢2™/7,

(b) Leto = cos40°. Find the minimal polynomial of o Show that Q() is a normal
field extension of @ of degree 3 and that Q(«) = Q({).

(¢) Show that v—3 e Q().
(d) Finally, show that Q(¢) = Q(x, v—3).

Using facts about the Galois group from Example 32.4.4, show that the five fields
@ () mentioned in Example 32.2.3 are all distinct.

Let Q(¢) be the cyclotomic field of 5th roots of unity.
(a) Show that \/5e Q({).

(b) Show that Q({) = Q(d), where o :%w 10 + 24/5.

(¢) What is the minimal polynomial of d?

For p=5,7,11,13,17, show explicitly that ZJ,’; is cyclic by finding a suitable ele-
ment and proving that it generates the group.

Consider the polynomial x* — 2x% — 7 over @.

(a) Show that its Galois group is the dihedral group D,, defined by generators a,b
and relations a* =e, b2 = e, ba = a 'b.

(b) Find the lattice of all subgroups ot Dy.

(c) Find all the subfields of the splitting field, and explain their correspondence

with the subgroups of Dy.

Consider the polynomial f(x) = x* + x — 3 over Q).

(a)

(b) Show that f(x) is irreducible.
)

Find the cubic resolvent and show that it is irreducible.

(¢) By curve sketching, show that f(x) has two real roots and two complex roots.
(d) Conclude that the Galois group of f(x) is S;.

(e) If o is a real root, then Q=) is an extension of degree 4 of @, but « is not con-
structible by ruler and compass.
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32.12 If f(x) is an irreducible quartic polynomial over @ whose cubic resolvent is irre-
ducible with discriminant A, show that the Galois group is A, if and only if A is a
square in Q; otherwise, the Galois group is S4.

32.13 Prove the following theorem of Holder: Let f(x) be irreducible of degree n over @,

having all real roots. If at least one of these roots can be expressed by real radicals
(of various degrees), then n = 2%, and all the roots can be expressed by real square

Construction Problems and Field Extensions

Out two soules therefore, which are one,
Though I must goe, endure not yet
A breach, but an expansion,
Like gold to ayery thinnesse beate.

It they be two, they are two so
As stiffe twin compasses are two,
Thy soule the fixt foot, makes no show
To move, but doth, if the'other doe.

And though it in the center sit,
Yet when the other far doth rome,
It leanes, and hearkens after it,
And growes erect, as that comes home.

Such wilt thou be to mee, who must

Like th'other foot, obliquely runne;
Thy firmnes drawes my circle just,

And makes me end, where [ begunne.

- trom A Valediction: Forbidding Mourning
by John Donne (1572-1631)




Non-Euclidean
- Geometry

CHAPTER

ertainly one of the greatest mathematical discoveries
of the nineteenth century was that of non-Euclidean
geometry: seen but not revealed by Gauss, and devel-
oped in all its glory by Bolyai and Lobachevsky. The
purpose of this chapter is to give an account of this
theory, but we do not always follow the historical
development. Rather, with hindsight we use those
| methods that seem to shed the most light on the sub-
o] ject. For example, continuity arguments have been
replaced by a more axiomatic treatment.

There are actually three different approaches presented here. One begins
with Saccheri's theory, dividing geometries into three classes, in Section 34, and
the theorem of Saccheri-Legendre, using Archimedes' axiom, in Section 35. The
second is the analytic model of a non-Euclidean geometry given in Section 39,
Third is Hilbert's axiomatic approach based on the axiom of limiting parallels
(L) in Section 40.

We start with a historical introduction to the problem of the parallels and the
various futile attempts to prove Euclid's fifth postulate from the other axioms.
Then we begin to explore this strange new world where the sum of the angles of
a triangle can be less than two right angles. The defect of this angle sum pro-
vides a measure of area, which we exploit in Section 36.

To explain the Poincaré model of a non-Euclidean geometry, we need the
Euclidean technique of circular inversion. This is developed in Section 37. It is a
technigue with many applications in Euclidean geometry. In particular, we

295
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make a digression in Section 38 to show how it can provide a solution to the
classical problem of Apollonius, to construct a circle tangent to three given
circles.

In Section 40 we present a development of non-Euclidean geometry based
on the axiom of existence of limiting parallel rays, proposed by Hilbert. This
allows us to avoid the appeal to continuity invoked by the founders of the sub-
ject and free ourselves from dependence on the real numbers. Then we give
Hilbert's brilliant construction of an abstract field from the set of common ends
of limiting parallel rays. This allows us to characterize hyperbolic planes by
their associated fields without using the techniques of projective geometry.

We follow the principle, established earlier in this book, of systematically
avoiding the use of real numbers. There is a slight cost, in that some familiar
results will look different here, but I believe this approach is justified by keeping
the intrinsic geometry in the foreground. For example, instead of taking loga-
rithms to define a distance function, we use a multiplicative distance function .
Then Bolyai's famous formula for the angle of parallelism « of a line segment PQ
takes the form tano/2 = g(PQ)~"' (39.13) and (41.9). The arbitrary constant k
that appears in some books, coming trom the choice of a base for the logarithms
in the distance function, is absent: In our approach, any two hyperbolic planes
over the same field are isomorphic. Also, the hyperbolic trigonometric functions
sinh, cosh, tanh do not appear in our formulae of hyperbolic trigonometry (42.2)
and (42.3). As a result of this approach, the solution of any problem we consider
can be found constructively, by ruler and compass, or, equivalently, by solving
linear and quadratic equations in the coefficient field.

33 History of the Parallel Postulate

To set the background for the discovery of non-Euclidean geometry, a kind of
geometry where there may be many lines through a point parallel to a given
line, let us trace the history of attitudes toward the parallel postulate.

We have seen already that Euclid's fifth postulate, which we refer to as the
parallel postulate, was of a much more sophisticated nature than the other pos-
tulates and axioms. Euclid seems to have recognized this himself, since he post-
poned using it as long as possible, and was careful to develop the standard con-
gruence theorems for triangles without the parallel postulate.

Euclid was criticized for making this a postulate and not a theorem. Proclus
(410-485), who represented the school of Plato in fifth-century Athens, has left
an extensive commentary on the first book of Euclid's Elements. His opinion on
the fifth postulate is unambiguous:

“This ought to be struck from the postulates altogether. For it is a theorem —
one that invites many questions, which Ptolemy proposed to resolve in one of
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his books —and requires for its demonstration a number of definitions as well as
theorems” (Proclus (1970), p. 150).

In his commentary on (1.29), Proclus gives Ptolemy’s proof and points out its
flaws, and then proceeds to give his own proof of the fifth postulate. First, he
says, we must accept an axiom that was used earlier by Aristotle:

Aristotle’s Axiom 2
If from a single point two straight lines
making an angle are produced indef- fF

initely, the interval between them will
exceed any finite magnitude. In other
words, given any angle BAC, and given
a segment DE, there exists a point F on A G
the ray AB such that the perpendicular
FG from F to the line AC will be greater
than DE. D e

Then Proclus proposes to prove the following lemma of Proclus.

Lemma of Proclus
If a straight line cuts one of two parallel ines, it cuts the other also.

His proof goes like this. If AB and
CD are two parallel lines, and it EF cuts \ £
AB, with F on the side toward CD, then
we apply Aristotle’s axiom to the angle A \ &
BEF. As we extend the ray EF indef- F
initely, its interval from the line AB will
exceed the distance between the paral- C D
lel lines, and so it must cut the line CD.

From this lemma (which is essentially the same as what we now call Play-
fair's axiom), Proclus easily proves the parallel postulate.

Proclus's reasoning was apparently accepted for some time, since it is repro-
duced without critical comment by F. Commandino in his edition of Euclid
(1575).

We can observe two things about the argument of Proclus. First of all, he as-
sumes another axiom (the axiom of Aristotle) in the course of his proof. This is
not uncommon in various attempted proofs of the parallel postulate. Often, one
ends up assuming (consciously or unconsciously) something else that turns out
to be equivalent to the parallel postulate. In this particular case, it is not so bad:
We will see that Aristotle's axiom is a consequence of Archimedes’ axiom, and
does not imply the parallel postulate by itself (35.6).
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The more serious flaw in Proclus’s argument is that he speaks of “the dis-
tance between the parallel lines'" as it all the points of one line were at the same
distance from the other line. Since the definition of parallel lines is lines in the
same plane that do not meet, however far extended, it does not follow from the
definition that they are at a constant distance from each other. In fact, this as-
sumption of constant distance is enough to prove the parallel postulate (in the
presence of Aristotle’s axiom), as Proclus shows. Thus, in view of (1.34) it is
equivalent to the parallel postulate.

This confusion of the definition of parallel lines as lines that do not meet
with the common-sense notion of parallel lines as equidistant from each other
(like railroad tracks) has persisted. For example, in the edition of Euclid's first
six books by J. Peletier (1557), definition 35 says, “Parallels, or equidistant
straight lines, are those which being in the same plane, and extended arbitrarily
in either direction, do not meet.” However, Peletier follows Euclid's proofs in
Book I, and does not make use of the equidistant property.

A more striking example is the very popular edition of the Elements of
Geometry by the Jesuit Andrea Tacquet (1612-1660), first published in 1654 and
reprinted many times over the next hundred and fifty years (Tacquet (1738)).
Tacquet's book is not a strict translation of Euclid, but an arrangement, to
make the study of geometry easier for beginners. Though he preserves the
numbering of Euclid’'s propositions, he takes great liberties with their proofs.
For example, he says that there is no point in proving (1.16), because it is a
special case of (1.32)! He apparently does not care about the fact that Euclid's
proof of (1.16) is independent of the parallel postulate, while (1.32) depends
on it.

Tacquet says that since there are
various species of lines (such as the
hyperbola and a straight line) that
approach each other indefinitely but ¥ -
never meet, so Euclid's definition of
parallel lines does not satisfactorily
reflect the nature of parallels.

He takes as his definition that two lines are parallel if the points of one are
all equidistant from the other, as measured by perpendiculars from points on
the first line to the second line.

There is no harm, of course, in using any definition you like of parallel lines,
though this one places a great burden on the proof of existence of parallels.

Tacquet misses the subtlety, however, because in the next sentence he says that
you can generate parallel lines as the locus of points at a fixed distance from a
given line as the perpendicular moves along. Here he is implicitly using another
axiom, which was in fact stated explicitly and used earlier by Christoph Clavius
(1537-1612) as a substitute for Euclid's parallel postulate:




33. History of the Parallel Postulate 299

Clavius’s Axiom
The set of points equidistant from a given line on one side of it form a straight
line.

This axiom, as one can easily show, is almost equivalent to the parallel pos-
tulate that Tacquet was trving to avoid (Exercise 33.7).

The French mathematician Alexis Claude Clairaut (1713-1765) wrote an
Elémens de Géomeétrie (first published in 1741) in which he tried to make geome-
try more accessible for students. He complained about the usual method of
teaching the elements, in which “one always starts with a great number of defi-
nitions, postulates, axioms, and first principles, which appear to offer nothing
but dryness to the reader.” He thought that Euclid’'s careful reasoning was
merely to satisfy a fussy audience: “That Euclid went to the trouble to prove that
two circles which cut each other do not have the same center; that a triangle
contained inside another triangle has the sum of its sides less than that of the
triangle in which it is enclosed—one should not be surprised. For this geometer
had to convince the obstinate sophists who glorified in finding fault with the
most evident truths: so it was necessary that geometry, like logic, make use of
proper reasoning, to close the mouths of its critics.”

Clairaut's purpose is to introduce the concepts of geometry simply and natu-
rally in the context of practical questions such as measurement of terrain. So he
talks of straight lines to measure the distance between points, and how to con-
struct perpendicular lines. Then he says, what is more easy than to use this
method to construct a rectangle? One has only to take a segment AB, and at its
endpoints raise perpendiculars AC and BD of equal length, and then join CD.
From here he develops the theory of parallels. The hidden assumption is that his
construction makes a rectangle. So we will call this assumption Clairaut’'s axiom.

Clairaut’s Axiom c D
Given a segment AB, let AC and BD

be equal segments perpendicular to AB. ] F
Then the angles at C and D are right -

angles, i.e., ABCD is a rectangle. A )

Robert Simson, M.D. (1687-1768), professor of mathematics in the Univer-
sity of Glasgow, made an important edition of Euclid’s elements, in Latin and in
English, first published in 1756, which went through some thirty successive edi-
tions. Simson railed against the errors introduced by earlier editors, and wished
to ‘restore the principal Books of the Elements to their original Accuracy.. ..
This T have endeavored to do by taking away the inaccurate and false Reason-
ings which unskilful Editors have put into the place of some of the genuine
Demonstrations of Euclid, who has ever been justly celebrated as the most
accurate of Geometers, and by restoring to him those Things which Theon
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or others have suppressed, and which have these many ages been buried in
Oblivion" (Simson (1803), Preface). Simson's restorations were not so much
based on textual studies as on his faith that anything mathematically true and
accurate must have been Euclid's, while anything incorrect or not rigorous must
have been inserted by “some unskilful editor.” About the parallel postulate, he
says, "It seems not to be properly placed among the Axioms, as, indeed, it is
not self-evident; but it may be demonstrated thus.” Simson then introduces an
axiom,

Simson’s Axiom

A straight line cannot first come nearer to another straight line, and then go
further from it, before it cuts it; and, in like manner, a straight line cannot go
further from another straight line, and then come nearer to it; nor can a straight
line keep the same distance from another straight line, and then come nearer to
it, or go further from it (Simson (1803), p. 295).

From this axiom, and implicitly making use of Archimedes’ axiom, Simson
proves (correctly) five propositions, of which the last is Euclid’s parallel postulate.

So here we have a clear case of an author substituting another axiom that
seems more natural to him, and then using it to prove the parallel postulate.

John Playfair (1748-1819), professor of natural philosophy, formerly of math-
ematics, in the University of Edinburgh, published a new edition of the first six
books of Euclid's Elements that first appeared in 1795. He says that Dr. Simson
has done a fine job of restoring Euclid's Elements, and that his purpose in pre-
senting a new edition is to give them the form that may ‘render them most
useful.” He says, “A new axiom is also introduced in the room of the 12th [which
we call the fifth postulate], for the purpose of demonstrating more easily some
of the properties of parallel lines” (Playfair {1795), Preface). This is Playfair's
axiom.

Playfair's Axiom
Two straight lines that intersect one another cannot be both parallel to the same
straight line.

In his notes to (1.29), Playfair has an interesting discussion of the problem of
parallels. He agrees with Proclus that Euclid's postulate should be proved, and
not taken as an axiom. He then reviews the three methods by which geometers
‘have attempted to remove this blemish from the Elements. ..

(1) by a new definition of parallel lines;

(2) by introducing a new Axiom concerning parallel lines, more obvious than
Euclid’s;

(3) by reasoning merely from the definition of parallels, and the properties of
lines already demonstrated, without the assumption of any new Axiom.”
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Exercises

Throughout these exercises, we assume the axioms of a Hilbert plane.

33.1 Show that the lemma of Proclus is equivalent to Playfair's axiom (P).

33.2

33.4

33.5

Consider the following special case of
Euclid’s parallel postulate, which we
will call the right triangle axiom:
Given a right angle ABD and an acute
angle o = CAB on the same side of the
line AB, the ray AC when extended
will meet the ray BD extended.

Show that the right triangle axiom
is equivalent to (P).

3 Show directly that the right triangle

axiom implies the special case of
Euclid’s parallel postulate that says,
given acute angles o = CAB and ff =
ABD on the same side of the line AB,
the rays AC and BD will meet.

Discuss the following “proof"” of the
right triangle axiom due to France-
schini (1756-1840): Given A, B,C,D as
in Exercise 33.2, drop a perpendicular
CE from C to the line AB. Since « is an
acute angle, E will lie between A and
B. Now take a point F further out on
the ray AC. Drop a perpendicular FG
from F to AB. Then G is between E
and B. As the point F moves out the
ray AC without bound, so the point G
must move along the ray AE without
bound, and thus it must eventually
reach B. Then I will be the inter-
section of AC and BD.

John Wallis (1616-1703) gave a proof
of the parallel postulate based on the
principle that to every figure there is
always a similar figure of arbitrary
size. To be precise, we state Wallis's
axiom as follows:

Wallis’s Axiom

Given a triangle ABC and given a line
segment DE, there exists a similar tri-
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angle A'B'C’ (that is, a triangle with the same angles as the triangle ABC) having
side A'B' = DE.

(a) Show that Wallis's axiom implies (P).

(b) In the non-Archimedean geometry of (18.4.3) show that there are similar tri-
angles of different sizes, but that Wallis's axiom fails. (We will see later that in a
semihyperbolic or semielliptic non-Euclidean geometry, the only similar triangles
are congruent triangles (Exercise 34.4).)

33.6 In a Hilbert plane, show that opposite < o
sides of a rectangle (i.e., a figure with a| H
four right angles) are equal. Hint: Bi-
sect one side AB at E, erect a perpen-
dicular to AD at E, and use the accom-
panying diagram. Your goal: to show 4 +
AB = CD. A € g

33.7 In this exercise we explore the consequences of Clavius's axiom.

(a) Letibe aline, and let m be a set of A B & m
equidistant points, which by Clavius's
axiom is a line. Thus for points A, B,C
in m, the perpendiculars AA', BB, CC'
to [ are all equal. Show that the angles - L i
at A, B, C are also right angles. A B’

™
-

(b) Let ABC be a right triangle. Extend

ABto D so that AB = BD, and drop the

perpendicular DE to AC. Assuming

Clavius’s axiom, show that DE = 2BC. I ; A
) . &

(¢) Show that Clavius's axiom, together with Archimedes’ axiom (A), implies (P).

(d) Show that Clavius's axiom holds in the non-Archimedean plane of (18.4.3) even
though (P) does not.

33.8 (a) Show that Aristotle’s axiom holds in the Cartesian plane over a field F, even if F
is not Archimedean.

(b) Show that Aristotle's axiom fails in the plane of (18.4.3).
33.9 Show that Clairaut's axiom is equivalent to Clavius's axiom.
33.10 Show that Simson's axiom is equivalent to Clavius's axiom.
33.11 Farkas Bolyai, the father of Janos, proposed the following axiom.

Bolyai’s Axiom
For any three noncollinear points A, B, C there exists a circle containing them.
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(a) Use the following construction to show that Bolyai's axiom implies Euclid's
parallel postulate. Given two lines I, m and a transversal AB, assume that the angles
o, ff on one side add up to less than two right angles. Let C be the midpoint of AB.
From C drop perpendiculars to | and m, and extend each an equal distance on the
far side to obtain D and E. Show that C, D, E are not collinear, and then use Bolyai's
axiom to prove that ! and m must meet.

(b) Show that Bolyai's axiom holds in any Hilbert plane with (P).

33.12 Dr. Anton Bischof in his thesis (1840)
proposed to free the theory of paral-
lels from its dependence on Euclid's
parallel postulate by giving a differ-
ent definition of parallel lines. Discuss
his theory, which goes like this: Lines
are parallel if they have the same
direction.

The direction of a line can be
measured by the angle it makes with
another line. So we define “parallel-
ism is the equality of direction of sim-
ilar lines against every other straight
line.” In other words, two lines are
parallel if they make equal angles
with every other line that meets them
both.

Then it is clear that parallel lines cannot meet, because a transversal line
through the point of intersection would make the same angle with both of them, so
they would be equal. By the same reasoning it is clear that there can be only one
parallel to a given line through a given point. If two lines make the same angle
with a line that cuts them, they will be parallel. “Similarly one obtains all the other
corollaries which one finds in all the textbooks.”
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33.13 Discuss the following “proof™ that the sum of the angles of a triangle is equal to two
right angles, independent of the theory of parallels, due to Thibaut (1775-1832):
Let ABC be the given triangle.
Take a segment AD on the line AC,
pointing away from C. Rotate it to the
position AE on the line AB. Then slide
it along the line AB into the position
BF. Rotate to BG, slide to CH, rotate to
ClI, and slide back to AD. In this pro-
cess, the segment AD has made one
complete rotation, which is 4 right
angles. But the amount it has rotated
is equal to the sum of the exterior
angles DAE, FBG, and HCI. Replacing
these by their supplementary angles,
we find that the sum of the three inte-
rior angles of the triangle is equal to
two right angles.

33.14 J.J. Callahan, then president of Duquesne University, in his book Euclid or Einstein
(1931) claims to prove the parallel postulate of Euclid, and thus nullify the theories
of Einstein based on non-Euclidean geometry. If you can locate a copy of his book,
read his proof and find the flaw in his argument.

34 Neutral Geometry

Sir Henry Savile, in his public lectures on Euclid's Elements in Oxford in 1621,
said, “In this most beautiful body of Geometry there are two moles, two blem-
ishes, and no more, as far as I know, for whose removal and washing away, both
older and more recent authors have shown much diligence.” He was referring to
the theory of parallels and the theory of proportion. Euclid's theory of propor-
tion has been thoroughly vindicated, and receives its modern expression in the
segment arithmetic that we have explained in Chapter 4.

The work on the theory of parallels, however, did not lead to the expected
result. Instead of confirming Euclid's as the one true geometry, these researches
showed that Euclid’s was only one of many possible geometries. The others are
what we now call non-Euclidean geometries. The story of this discovery is one
of the most fascinating chapters in the history of mathematics, and has been
amply told elsewhere. Here we will confine ourselves to the briefest outline.

We can distinguish four periods. The first, which we have elaborated in the
previous section, might be called “dissatisfaction with Euclid.” While fully ac-
cepting Euclid's Elements as the true geometry, critics said only that his treat-
ment of this topic could have been better. So they tried to better Euclid, either
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by proving the parallel postulate, or by replacing it with some other more natu-
ral assumption.

The second period, exemplified by the work of Saccheri, Legendre, and
Lambert, was based on the attitude, let us suppose the parallel postulate is false
and see what conclusions we can draw. In this way they developed a collection
of results that would be true if the parallel postulate were false, still expecting
ultimately to find a contradiction and thus vindicate Euclid. So strong was the
power of tradition that even after meticulously proving a whole series of propo-
sitions in this new geometry, each of these authors fell into error and deluded
himself into thinking he had found a contradiction.

What a small step of the imagination, with what great consequences, was the
transition to the third period! All it required was to think, yes it is possible to
have a geometry in which the parallel postulate is false, and these are its first
theorems. This step was taken independently by Carl Friedrich Gauss (1777-
1855) in Germany, Janos Bolyai (1802-1860) in Hungary, and Nicolai Ivanovich
Lobachevsky (1793-1856) in Russia. Although Gauss was the first to realize the
existence of this new geometry, he published nothing of his researches, leaving
Bolyai and Lobachevsky each to believe that he was the inventor of this new ge-
ometry. Bolyai exclaimed, in a letter to his father, “Out of nothing I have created
a strange new universe.”

The fourth period contains the confirmation of these new geometries by pro-
viding models for the axiom systems to show their consistency. This occurred
only later, with the work of Beltrami, Klein, and Poincare.

In this and the next section we will describe some work of the second period.
Then in later sections we will give a model of the non-Euclidean geometry due
to Poincaré, and a fuller axiomatic development of the theory, containing the
results of Bolyai and Lobachevsky, in a logical framework provided by Hilbert.

A geometry satistying Hilbert's axioms of incidence, betweenness, and con-
gruence, in which we neither affirm nor deny the parallel axiom (P), will be
called a neutral geometry. This is the same as a Hilbert plane, but the terminology
emphasizes that we do not assume (P). Recall from Section 10 that the results of
Euclid, Book I, up through (1.28), with the possible exception of (1.1) and (1.22),
also hold in neutral geometry. A Hilbert plane in which (P) does not hold will be
called a non-Euclidean geometry. We have already seen one example of a non-
Euclidean geometry (18.4.3), but that one is semi-Euclidean, in the sense that
the angle sum in a triangle is still equal to 2RA (two right angles) (Exercise 18.4).
Now we will consider other geometries in which the angle sum of a triangle may
be different from 2RA.

The results of this second period are mainly due to Girolamo Saccheri
(1667-1733) and Adrien Marie Legendre (1752-1833). Saccheri's book Euclides
ab omni naevo vindicatus was published in 1733. The title “Euclid freed of every
blemish” recalls the quotation from Savile above. The first 32 propositions are
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a marvel of mathematical exposition. Unfortunately, after that his previously
impeccable rigor lapses, and he says that he has proved the parallel postulate,
because if it were false, there would be two lines having a common perpendicu-
lar at infinity, which is “repugnant to the nature of a straight line.”

Saccheri’'s work was perhaps before its time, because it did not receive the
recognition it deserved, and lay hidden in obscurity until the end of the nine-
teenth century. Essentially equivalent results were discovered independently
half a century later by Legendre, whose book Eléments de Géométrie was first
published in 1794. It was followed by many new editions, reprints, and trans-
lations, which had a wide influence on the teaching of geometry and revitalized
interest in the question of parallels.

We start with a figure extensively studied by Saccheri, which goes back to
Clavius, in his commentary on Euclid’s (1.29), where he proposes the axiom that
we discussed earlier (Section 33). Since it was Clavius's edition of Euclid that
was recommended to Saccheri by the Jesuit mathematician Tommaso Ceva, we
may assume that Saccheri was inspired by Clavius to study this figure further.

Proposition 34.1

In a Hilbert plane, suppose that two equal
perpendiculars AC, BD stand at the ends
of an interval AB, and we join CD. (This
is called a Saccheri quadrilateral.) Then
the angles at C and D are equal, and fur-
thermore, the line joining the midpoints of
AB and CD, the midline, is perpendicular A B
to both.

Proof Given ABCD as above, let E be
the midpoint of AB and let | be the per-
pendicular to AB at E. Since [ is the per-
pendicular bisector of AB, the points
A,C lie on one side of [, while B, D lie
on the other side. Hence I meets the
segment CD in a point F. By (SAS) the
triangles AEF and BEF are congruent. A Y € B
Hence the angles / FAE and /. FBE are

equal, and AF = FB.

By subtraction from the right angles at A and B we find that the angles /. CAF
and / DBF are equal. So by (SAS) again, the triangles CAF and DBF are congru-
ent. This shows that the angles at C and D are equal, and that F is the midpoint
of CD.

The two pairs of congruent triangles also imply that the angles / CFE and
/. DFE are equal. So by definition, both of these angles are right angles.
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Remark 34.1.1

From the equality of the angles at C and D, Saccheri distinguished three cases,
which he called the hypothesis of the acute angle, the hypothesis of the right
angle, and the hypothesis of the obtuse angle, according to whether C and D
were acute, right, or obtuse. He showed that if any one of these holds for one
such quadrilateral, it holds for all. His proofs used continuity (in the form of the
intermediate value theorem), but we will show in the following propositions that
his result is also true in an arbitrary Hilbert plane.

Proposition 34.2

Let ABCD be a quadrilateral with right

angles at A and B, and unequal sides AC,

BD. Then the angle at C is greater than

the angle at D if and only if AC < BD. D

Proof Suppose AC < BD, and choose E - €
on BD such that AC = BE. Then ABCE
is a Saccheri quadrilateral and / ACE =
/. BEC, by the previous proposition.
Now, the angle / ACD is bigger than : 1
[ ACE, and / BEC is higger than the an- A B
gle at D by the exterior angle theorem
(1.16), so we find that the angle at C is
bigger than the angle at D, as required.

On the other hand, if AC > BD, the same argument with roles reversed
shows that the angle at C is less than the angle at D. Hence we obtain the “if and
only if” conclusion of the proposition.

Proposition 34.3
Let ABCD be a Saccheri quadrilateral, let c

P be a point on the segment CD, and let P D
PQ be the perpendicular to AB. Let o be = P
the angle at C (equal to the angle at D). f# T

(a) If PQ < BD, then o is acute.

(b) If PQ = BD, then o is right. )

(c) If PQ > BD, then o is obtuse. A @ 5

Proof Let 8,y be the two angles at P. In case (a), if PQ < BD, then PQ < AC also,
and from the previous proposition we obtain z<f and « <y Hence
20 < fi+y = 2RA. Thus = is acute. The proofs of cases (b), (¢) are analogous.




308 7. Non-Euclidean Geometry

Remark 34.3.1
Once we have proved all three cases (a), (b), and (c), it follows that each one is
an equivalence, not only an implication.

Proposition 34.4

Again let ABCD be a Saccheri quadrilateral, but this time let P be a point on the line
CD outside the interval CD. Let PQ be the perpendicular to the line AB, and let o be
the angle at C (equal to the angle at D).

(a) If PQ > BD, then o is acute.
(b) If PQ = BD, then o is right.
(c) If PQ < BD, then « is obtuse.

Proof 1In case (a), assuming PQ > BD,
choose E in PQ such that BD = QE.
Draw CE and DE. Then we have three
Saccheri quadrilaterals. We will com-
pare their angles. Let «,ff,y be the top
angles of the quadrilaterals ABCD,
BQDE, AQCE, respectively. Let d =
/. EDP. Then ¢ is an exterior angle of the
triangle CDE, so by (1.16), é > / DCE =
o — 3. On the other hand, looking at the
angles at E, we see that f > y. Now,
ZRA=a+f+d>a+y+o—y=20 s0
o is acute.

For case (b), when PQ = BD, then AQCP is a Saccheri quadrilateral, so by
(34.3b) its angle, which is equal to the angle of ABCD, is right.

In case (c), when PQ < BD, the
proof is similar. Extend PQ to E with
BD = QE and join CE,DE. This gives
three Saccheri quadrilaterals, with upper
angles o, ff,y as marked. Let d = /. PDE. & D E
Then by the exterior angle theorem « 5] P
(1.16), 6 > /. DCE =y — a. Looking at E r
we see that y > . On the other hand, P
looking at D we see that a+f—9d =
2RA. So, combining these results, we - &

obtain A I£4

ZRA=o+f-d<a+y—0< 2o

Hence « is obtuse, as required.
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Remark 34.4.1
As in the previous proposition, once we have proved all three cases, they each
become equivalences, not just implications.

Theorem 34.5 (Saccheri)

In any Hilbert plane, if one Saccheri quadrilateral has acute angles, so do all Saccheri
quadrilaterals. If one has right angles, so do they all. If one has obtuse angles, so do
they all.

Proof We will give the proof only in the acute case, since the proofs in the two
other cases are identical.

Suppose ABCD is a Saccheri quadri-
lateral with acute angles, and let EF
be its midline (34.1). If A'B’'C'D’ is an-
other Saccheri quadrilateral with mid- ’
line equal to EF, then it can be moved a
by a rigid motion to make the midlines
coincide. Suppose AB < A'B’. We obtain
a figure as shown, with o acute. Hence,
by (34.4), BD < B'D'. Then by (34.3), o’
is acute. If AB > A’B’, we run the same
argument in the reverse order. It fol-
lows that all Saccheri quadrilaterals
with midline equal to EF have acute
angles.

Next we show that for any other segment, there exists a Saccheri quadrilat-
eral with acute angles and midline equal to that segment.

Lay off the given segment as EG on
the ray EB. Let the perpendicular to AB
at G meet CD in H. Reflect G and Hin & b
EF to get Gy, H;. Reflect F and H in AB H, F H
to get Fy, Hy. Now, G;GH H is a Saccheri
quadrilateral with midline EF, so by the
previous argument, its angle ff is acute.
But then FF3HH» is another Saccheri

]

E 0 "]
quadrilateral with the same acute angle #A ¢, € 9 3
f and midline EG. Now by the earlier
argument, every other Saccheri quadri- "J—\I
lateral with midline equal to EG has ‘1; ; _{:“

acute angles. But EG was arbitrary, so
the theorem is proved.

Next we will show how to interpret this result on Saccheri quadrilaterals in
terms of the sum of the angles in a triangle.
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Proposition 34.6
Given a triangle ABC, there 18 a Saccheri quadrilateral for which the sum of its twe
top angles is equal to the sum of the three angles of the triangle.

Proof Let ABC be the given triangle.
Let D and E be the midpoints of AB and
AC, and draw the line DE, which we
call the midline of the triangle. Drop
perpendiculars BF, AG, CH to DE.

Now, AD = DB, and the vertical F H
angles at D are equal, so by (AAS) the T @ c
triangles ADG and BDF are congruent.
Similarly, AE = EC and the vertical
angles at E are congruent, so the tri-
angles AEG and CEH are congruent.
From congruent triangles we obtain
BF = AG = CH. The quadrilateral FHBC

has right angles at F and H, so it is a A
Saccheri quadrilateral (upside down).
The angles of the quadrilateral at B and F 1]

C are composed of the angles of the tri- d > v/E G
angle at B and C, plus angles that are
congruent to the two parts of the angle B C
at A, divided by the line AG. Hence the
angles at B and C of the quadrilateral
equal the angle sum of the triangle. It
follows that the triangle and the quadri-
lateral have equal defect.

If G happens to fall outside the interval FH, the same argument works, ex-
cept that we use differences instead of sums of angles.

L v

Theorem 34.7
In any Hilbert plane:

(a) If there exists a triangle whose angle sum is less than 2RA, then every triangle
has angle sum less than 2RA.
(b) The following conditions are equivalent:

(i) There exists a triangle with angle sum = 2RA.
(ii) There exists a rectangle.
(iii) Every triangle has angle sum = 2RA.

(c) If there exists a triangle whose angle sum is greater than 2RA, then every triangle
has angle sum greater than 2RA.
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Proof (a) If there exists a triangle with angle sum less than 2RA, then the asso-
ciated Saccheri quadrilateral of (34.6) must have acute angles. By (34.5) it fol-
lows that every Saccheri quadrilateral has acute angles, and then by (34.6) again,
every triangle must have angle sum less than 2RA.

The proof of (b) is the same, where we note that a rectangle is just the same
thing as a Saccheri quadrilateral with right angles. The proof of (¢) is the same
as the proof of (a).

Definition
In case (a) of the theorem, we say that the geometry is semihyperbolic. In case
(b) we say that it is semi-Euclidean, and in case (c) we say that it is semielliptic.

Remark 34.7.1

Note that these three cases are equivalent to what Saccheri called the hypothesis
of the acute angle, the hypothesis of the right angle, and the hypothesis of the
obtuse angle. Thus all Hilbert planes can be divided into these three classes. Of
course, a Euclidean plane, or more generally any Hilbert plane satistying (P), is
semi-Euclidean, by (1.32). On the other hand, we have seen an example of a
semi-Euclidean plane that does not satisfy (P) in Exercise 18.4.

We reserve the term hyperbolic for geometries satistying Hilbert's hyperbolic
axiom (cf. Section 40). Those geometries will be semihyperbolic, but there are
also semihyperbolic geometries that are not hyperbolic (Exercise 39.24).

As for the semielliptic case, these were first discovered in 1900 by Dehn,
who called them non-Legendrean. The term elliptic is usually applied to geo-
metries like a projective plane in which there are no parallel lines at all. These
do not satisfy Hilbert's axioms, so fall outside our realm of inquiry. However, a
suitably small patch of a spherical geometry over a non-Archimedean field gives
an example of a semielliptic Hilbert plane (Exercise 34.14).

Definition

We say that a triangle is Euclidean if the sum of its angles is equal to 2RA. Oth-
erwise, we call it non-Euclidean. To measure the divergence of a triangle from
the Euclidean case, we define the defect of any triangle to be 2RA—(sum of
angles in the triangle). Thus ¢ = 0 for a Euclidean triangle, d is a positive angle
for a triangle in a semihyperbolic plane, and d is the negative of an angle for a
triangle in a semielliptic plane.

Lemma 34.8
If a triangle ABC is cut into two triangles by a single transversal BD, the defect of the
big triangle is equal to the sum of the defects of the two small triangles:

J(ABC) = 6(ABD) + d(BCD).
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Proof Label the angles as shown in the
diagram. Then

J(ABD) = 2RA — o — f§; — 01,
O(BCD) = 2RA — f, — d; — .

Since 0, +d, = 2ZRA, by adding we
obtain

J(ABD) + 6(BCD)
= 2RA — o —f§, — B, — y = 0(ABC),

as required.

The Theory of Parallels in Neutral Geometry

Given a line [ and a point P not on I,
we know from (1.31) that there exists a
line through P parallel to . If the Hilbert
plane satisfies Playfair's axiom (P), that \{_}/
parallel is unique. But in the non-
Euclidean case, there may be more than /
one parallel to [ through P. Among all
these parallels, there may be one that is
closer to [ than all the others on one L
side. To make a formal definition, it
matters which end of the line we look
at, so we will phrase it in terms of rays.

We denote a ray by the symbol Aa,
where A is its endpoint, and a denotes A &
the line carrying the ray, together with "'—/l;’
a choice of one of the two directions on
the line. Two rays are coterminal if they lie on the same line and “go in the same
direction.” This can be made precise by saving that one ray is a subset of the
other. Thus if Aa is a ray and A’ is another point on the line carrying a,
we denote by A’a the corresponding coterminal ray.

Definition

A ray Aa is limiting parallel to a ray Bb if
either they are coterminal, or if they lie

on distinct lines not equal to the line

AB, they do not meet, and every ray in

the interior of the angle BAa meets the

ray Bb. In symbols we write Aa ||| Bb. 8
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It requires some work, in the following propositions, to show that this notion
is an equivalence relation. Note that we say nothing about the existence of such
limiting parallels. All the following results should be understood in the sense
that they hold whenever the limiting parallels exist. Later, in Section 40, we will
introduce the hyperbolic axiom, which postulates the existence of limiting par-
allels from any point to any given ray.

Proposition 34.9
If Aal||Bb, and if A'a, B'b are rays coterminal to Aa, Bb respectively, then
Alal|| B'b.

Proof 1t is sufficient to replace one ray
at a time by a coterminal ray. So first,
suppose that A" is on the ray Aa. We A
must show that every ray n in the inte-
rior of the angle BA'a meets the ray Bb.
Take a point P on the ray n, different
from A’. Then the ray AP lies in the
interior of the angle BAa, so by hypoth- »
esis it meets the ray Bb in a point C. B L—-}
Now, the ray n cuts one side of the tri-
angle ABC, so by Pasch's axiom (B4) it
must cut another. The side AB is im-
possible, so n meets BC, which is con-
tained in the ray Bb, as required. P

Next, suppose A’ is on the line a, but
not in the ray Aa. Let A'n be a ray in A
the angle BA'a, and take a point P on
the line &but not in the ray A'n. Then A
the ray PA , after it passes through A, is
in the interior of the angle BAa, so
meets Bb in a point C. By the crosshar g
theorem (7.3) A'n will meet AB, and C
then by Pasch's axiom it will meet BC. A

If we replace B by a point B’ in the
ray Bb, or by a point B” on the line b
outside the ray Bb, the proof is easier. \

-5

Any ray from A in the interior of the
appropriate angle must meet the ray ”
B'b or B"b either by the crossbar theo- [ B B’
rem or by the property Aa ||| Bb.
In this proof we passed over in silence a small point, namely to show that
after replacing Aa, Bb by coterminal rays A'a, B'b, we still have satisfied the
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condition that the rays A’a and B'b do not meet, and they lie on lines not equal
to A’'B’. For this it is sufficient to show that if Aa ||| Bb, then the lines supporting
those rays do not meet. We leave this as Exercise 34.6.

Proposition 34.10
If a ray Aa is limiting parallel to another vay Bb, then also Bb is limiting parallel
to Aa.

Proof 1If the rays are coterminal, this is trivial, so we may assume that a and b
are distinct lines. Drop a perpendicular AB’ to the line b. Then by the previous
proposition, Aa is limiting parallel to B'b, and it will be sufficient to prove B'b
limiting parallel to Aa. In other words, changing notation, we may assume that
the angle ABb is a right angle.

We must show that any ray Bn in
the interior of the angle at B meets the
ray Aa. Suppose it does not. Drop the
perpendicular AC from A to n. Since
the angle ABn is acute, by the exterior A
angle theorem, C must lie on the ray
Bn, not on the other side of B. In the
triangle ABC, the angle at C is right,
while the other two angles are acute.

Hence by (1.19), AC < AB. (Why is the C o
angle at A acute? Because it is less than .
the angle BAa, and this angle must be 7 h

less than or equal to RA. Otherwise, the
perpendicular to BA at A would lie
inside the angle BAa and be parallel to
Bb, contradicting our hypothesis.)

Rotate C,n, and a around the point
A until C lands on a point C’ of AB, and
n’,a’ are the images of n,a. Then Aa’
will meet Bb, and n’ will be parallel to
b, so by Pasch's axiom, it will meet a’.
Rotating back, we find that n meets Aa,
a contradiction.

Proposition 34.11
Given three rays Aa, Bb, Ce, if Aa ||| Bb and Bb || Ce, then Aa||| Ce.

Proof 1If any two are coterminal, the result follows from the previous proposi-
tions, so we may assume that they lie on distinct lines.
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Lemma 34.12

Given three rays Aa,Bb, Cc lying on distinct lines, with Aa || Bb and Bb || Cc, after
replacing one by a coterminal ray if necessary, we may assume that A, B, and C are

collinear.

Proof 1If A,C lie on opposite sides of the line b, then the segment AC meets the
line b in a point B’. Replacing Bb by the coterminal ray B'b, we have A,B',C

collinear.

If' A, C lie on the same side of the
line b, we consider the angles ABb and
CBb. If these angles are equal, then
A,B,C are collinear. If they are not
equal, one must be smaller, say CBb is
smaller. Then the ray BC is in the
interior of the angle ABDb, and Bb|| Aa
by (34.10), so the ray BC meets Aa in a
point A’. Replacing Aa by A’a we have
A’ B, C collinear. If ABb is smaller, the
same argument works replacing C by a
point C’.

Proof of (34.11), continued By the lemma, we may assume A,B,C collinear. It
follows immediately from the hypotheses that the rays Aa, Bb, Cc are all on the

same side of the line ABC.

Case 1 1If B is between A and C, take
any ray An in the interior of the angle
CAa. Since Aa ||| Bb, this ray meets Bb in
a point B’. Then B'b || Cc by (34.9), so
the continuation of that ray will meet
Cc. Hence Aal ||| Cc.

Case 2 C is between A and B. In this
case a ray An in the interior of the angle
CAa meets b in a point B'. Then Cc
must meet n by Pasch's axiom.




316 7. Non-Euclidean Geometry

Case 3 A is between C and B. The proof is the same, taking into account
Ccl|| Bb by (34.10).

Remark 34.12.1

The proof of Case 2 of (34.11) actually shows a stronger result: If Aa ||| Bb, if C is
between A and B, and if Cc is any ray entirely in the interior of the angles BAa
and ABb, then Cec is also limiting parallel to Aa and Bb.

Corollary 34.13

The relation “limiting parallel’” for rays is an equivalence relation, which includes the
equivalence relation of being coterminal. We define an end to be an equivalence class
of limiting parallel rays.

Exercises

34.1 1f ABCD is a Saccheri quadrilateral, show that CD > AB if and only if the angles at
C, D are acute.
D

34.2 Define a Lambert quadrilateral to be a C'
quadrilateral ABCD with right angles
at A, B, C. Show that the fourth angle
D is acute, right, or obtuse according
as the geometry is semihyperbolic,
semi-Euclidean, or semielliptic.

34.3 Let AB be the diameter of a circle, and
let ABC be a triangle inscribed in the C
semicircle. Show that the angle at C
is acute, right, or obtuse, according as
the geometry is semihyperbolic, semi- A 0 A
Euclidean, or semielliptic. *

34.4 In a semihyperbolic or a semielliptic plane, prove the (AAA) congruence theorem
for triangles: If two triangles ABC and A'B'C'have A=/ A", fB=/B, /C=
/. C', then the two triangles are congruent.

34.5 In a semihyperbolic or a semielliptic plane, show that for any line { and any point A
not on I, there are infinitely many lines through A parallel to . {Hint: Use Saccheri
quadrilaterals.)

34.6 In Aa and Bb are limiting parallel rays lying on distinct lines, show directly from
the definition that the lines carrying these rays do not meet.
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34.7

34.8

34.9

34.10

34.11

34.12

In a Hilbert plane satistying Dedekind's axiom (D), show that for any point A and
any ray Bb, there exists a ray Aa from A, limiting parallel to Bb.

In the Hilbert plane of (18.4.3) show that there do not exist any pairs of limiting
parallel rays lying on distinct lines.

A

(ASAL) Given four rays Aa, Bb, A'a’,

B'l, assume that / BAa =/ B'A'a’,
AB=A'B’, and / ABb =/ A'B'b'. Show B
that Aa || Bb if and only if A'a’ || B'S’.

(ASL) Given Aa||Bb and A'a’|||B'b', assume 7 BAa=/B'A'a’ and AB= A'B".
Then / ABb =/ A'B'b’'. We call the figure consisting of the segment AB and the
two limiting parallel rays Aa and Bb a limit triangle.

Given a limit triangle aABb, construct
its midline as follows. Let the angle bi-
sectors at A, B meet at a point C. Drop
perpendiculars CD, CE from C to a, b.
Join DE, and let ¢ be the perpendicu-
lar from C to DE.

(a) Show that Cc is limiting parallel to
Aa and Bb.

(b) Show that reflection in the line ¢
interchanges a and b. Thus ¢ plays a
role for the rays Aa and Bb similar
to the role of the angle bisector of
an angle, which interchanges the two
sides of an angle by reflection. So we
can think of C as the intersection of
the three (generalized) angle bisectors
of the limit triangle.

Show that the analogue of Pasch's
axiom (B4) holds for a limit triangle
aABb: If [ is a line that does not con-
tain A or B, and does not contain a ray h
limiting parallel to Aa or Bb, and if [ B

meets one side AB, Aa, or Bb, then it

must meet a second side, but not all ,t

three.
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34.13 Spherical geometry. Let F be a Euclidean ordered field. In the Cartesian 3-space over
F consider the sphere of radius » given by the equation x? + y* + z* = r*. We can
make a geometry, called spherical geometry, as follows. Our s-points are the points
of F3 on the surface of the sphere. Our s-lines are great circles on the sphere, that is
to say, the intersections of the sphere with planes of F* passing through the origin
O = (0,0,0). On any piece of an s-line that is less than half of a great circle, we can
define betweenness by projecting the points from O into any plane. We say that
two segments of s-lines are congruent if the chords joining their endpoints, as line
segments of F? inside the sphere, are congruent. We say that angles are congruent
if the projected angles on the tangent planes to the sphere at their vertices are
congruent.

Which of Hilbert's axioms hold in this geometry? You will see right away that
(11) fails and betweenness does not make very good sense, so it is not a Hilbert
plane. Show, however, that the congruence axioms (C1)-(C6) and (ERM) do hold.

34.14 (a) Now suppose that we take F to be a non-Archimedean field, such as the one in

(18.4). Let t be an infinite element in F, take the sphere of radius ¢, and take our
geometry Il to consist of only those points on the surface of the sphere that are at
finite distance from a fixed point A on the sphere. Show that this geometry satishies
all of Hilbert's axioms, so it is a Hilbert plane. Show also that the sum of the angles
of any triangle in this geometry is greater than two right angles. This is an example
of a semi-elliptic Hilbert plane.
(b) Again take F'to be a non-Archimedean field, and let I1, be the set of points on a
sphere of radius 1 whose distance from a fixed point A is infinitesimal. Show that
I} is another semielliptic Hilbert plane, and show that I1; is not isomorphic to the
plane 1, of part (a). Hint: cf. Exercise 18.6.

34.15 In any Hilbert plane, show that the three angle bisectors of a triangle meet in a
point.

34.16 In any Hilbert plane, if two of the perpendicular bisectors of the sides of a triangle
meet, then all three perpendicular bisectors meet in the same point.

34.17 We say that two lines in a Hilbert plane are strictly parallel if every transversal line
makes equal alternate interior angles. Show that the following conditions are
equivalent:

(i) The plane is semi-Euclidean.
(ii) For every point P and every line [, there exists a unique line m through P
strictly parallel to L.
(iii) There exists at least one pair of distinct strictly parallel lines.

34.18 Show that strictly parallel lines (Exercise 34.17) behave in many of the same ways
as parallel lines in Euclidean geometry:

(a) If 1 is strictly parallel to m, and m strictly parallel to n, then [ is strictly parallel
to n (analogue of (1.30)).

(b) If both pairs of opposite sides of a quadrilateral are strictly parallel, then oppo-
site sides and opposite angles are equal (analogue of (1.34)).
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34.19 In a semi-Euclidean plane, show that if two of the altitudes of a triangle meet, then
all three altitudes meet in the same point.

34.20 In a semi-Euclidean plane, show that the medians of a triangle all meet in a point.

34.21 In any Hilbert plane, show that the line joining the midpoints of two sides of a tri-
angle is orthogonal to the perpendicular bisector of the third side.

35 Archimedean Neutral Geometry

If we add Archimedes' axiom to the axioms of neutral geometry, we have the
remarkable fact that the angle sum of a triangle is always less than or equal to
two right angles. In other words, the semielliptic case is impossible. Saccheri's
proof of this result uses a continuity argument, so we prefer the method of
Legendre, using a repeated application of the construction Euclid used in (1.16)
for the proof of the exterior angle theorem. In either case, the proof makes
essential use of Archimedes’' axiom. To begin with, we show that the analogue of
Archimedes' axiom holds for angles.

Lemma 35.1
In a Hilbert plane with (A), let o, f be given angles. Then there exists an integer n > 0
such that no > fi, or else no. becomes undefined by exceeding 2RA.

Proof First we make a reduction. Given
the angle ff at O, measure off equal seg-
ments OA and OB on the two arms, and A

draw AB. The line OC joining O to the

midpoint of AB will bisect the angle f C
and will make a right angle at C.

Since it is just as good to prove the [F )
lemma for %ﬁ, we reduce to studying o o B
the case of an angle contained in a right
triangle.

So now let OAB be a right triangle
with the angle ff at O and a right angle
at A. Suppose, by way of contradiction,
that no < ff for all n. Lay off the angle «
inside the triangle, and let that angle
cut off a segment AA, on the line AB.
Again lay off the angle « at O to cut a
segment A A; on the line AB. Continu-
ing in this manner, we obtain a se-
quence of points A;, Az, As,... on AB,
with each successive segment A;A;
subtending an angle « to O.
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I claim that AA| <A Ay <A;A3<< ---.

Consider any three consecutive A; and B
call them C, D, E. Let DF be drawn such
that /. CDO = / FDO. Then the triangles
ACDO and AFDO are congruent by
(ASA), and hence CD = DF. Now, the
angle 6 = / EFD is an exterior angle
to the triangle AFDO, and so § >y =
/[ FDO = / CDO, by (1.16). On the other
hand, y =/ CDO is an exterior angle
to the triangle ADEO, and so y =& =
/ DEO, by (1.16). We conclude that
d > e Then by (1.19), the larger angle
subtends the larger side, so DE > DF = A

CD, as required.

By the way, in order for the drawing to be accurate, i.e., for F to lie in the
segment OF, we were tacitly assuming that y is acute. This is true for the first
triangle OAA,, and follows inductively for the rest from (1.16).

Now, the axiom of Archimedes (A) implies that there is some integer n such
that n- AA, > AB. Since the successive segments A,A;, AA3, ... are each bigger
than the one before, it follows for a stronger reason that AA, > AB. But this
contradicts the supposition that all the points A; were in the segment AB, and
thus proves the result.

Theorem 35.2 (Saccheri-Legendre)
In a Hilbert plane with Archimedes’ axiom (A), the sum of the angles of a triangle is
less than or equal to two right angles.

Proof Suppose to the contrary that there is a triangle AABC whose angle sum is
greater than two right angles, say two right angles plus &, where ¢ is some non-
zero angle. Then we will get a contradiction by replacing the triangle AABC by
another triangle ADEF, which has the same angle sum as AABC, and further-
more has one angle « very small, less than ¢. Then the remaining two angles will
be more than two right angles, which contradicts (1.17).

As a first step we show, given any 3
triangle AABC, and having chosen one e
of its angles, say / A, that there is an- D
other triangle AAEC having the same
angle sum as AABC, and one of whose
angles is less than or equal to %(angle A # & c
A). -

We use the construction of (I1.16). Let D bisect BC, draw AD and extend that
line to a point E such that AD = DE, and draw EC. Now the vertical angles at D
are equal (1.15) and BD = DC and AD = DE by construction, so by (SAS) the tri-
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angles AABD and AECD are congruent. In particular, angle f = / BAD is equal
to /. DEC. Also, y = /_ ABD = / DCE.

Now AABC and AAEC both have the same angle sum, which is equal to
%+ ffi+7y+0, where o = /. DAC and y = / DCA. On the other hand, the angle at
A is o + f, so of the two angles «, f in the new triangle, one of them satisfies «
(or f) < i(angle A).

Now let us go back to our original triangle AABC having angle sum equal to
two right angles plus . By applying the above process each time to the smallest
angle of the preceding triangle, we can obtain a sequence of triangles

Ty = AABC, Ty, T, Ts, . . .

each of which has angle sum the same as AABC, and where T, has one angle
less than or equal to 1/2"(/ A). Now using Archimedes' principle for angles
(35.1) we see that for some n, T,, will have one angle less than ¢, which gives the
desired contradiction to (1.17).

Remark 35.2.1
In the above construction, two angles of the triangle T,., are less than the
chosen angle in triangle T,. Thus T,,; has two angles less than or equal to

(1/27)(LA).

Corollary 35.3

In any triangle, the exterior angle is greater
than or equal to the sum of the opposite
interior angles.

Proof Indeed, the exterior angle plus

the third interior angle is equal to two

right angles. Since the sum of all the AL
angles is less than or equal to 2 right

angles, the sum of the two opposite

angles is less than or equal to the exte-

rior angle.

oD

From the preceding theorem of Saccheri and Legendre, we see that the semi-
elliptic case is impossible in an Archimedean Hilbert plane. Now we will show
more, namely, if an Archimedean Hilbert plane is semi-Euclidean, then already

(P) holds.

Proposition 35.4
In a Hilbert plane with (A), if every triangle is Euclidean, then (P) holds.

Proof 'We will prove the contrapositive, namely, if not (P), i.e., if there is a line |
and a point P not on [ through which there are two or more lines parallel to [,
then there exists a non-Euclidean triangle.
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Given such a line ! and point P, drop
a perpendicular from Pto [ at A, and let
m be the line through P perpendicular
to that perpendicular. Then m is paral-
lel to I (1.27). Now let m' be another line
through P parallel to [. Then on one side
of AP, the ray m’ will be inside the right
angle formed by AP and m. Let it form
an angle fi with m at P.

Now take any point B on [ on the same side of AP as m’. Let the angle / PBA
be o. Choose C on I such that BC = PB, and draw PC. Then we have an isosceles
triangle BPC, so the angles y shown are equal. But « is an exterior angle to the
triangle BPC, so « > 2y by (35.3). Repeating this process n times, we can find a
point F further out on the ray [ such that the angle PFA is less than or equal to
(1/2™)a. By (35.1) we can take n large enough so that / PFA < f.

Consider the triangle PFA. It has one right angle, one angle less than f, and
one angle, / APF, that is less than RA — ff, because the ray m’, being parallel to I,
cannot lie inside the triangle PFA. Thus the angle sum of the triangle PFA is
strictly less than 2RA, and this proves the result.

Now we can explain how Legendre thought to prove the parallel postulate.
He suggested another postulate, which we call Legendre's axiom.

Legendre’s Axiom

Given an angle o and given a point P in
the interior of the angle a, there exists a
line I through P that meets both sides of
the angle.

He shows that this implies the par-
allel postulate (see (35.5) below). While
this axiom seems reasonable enough in
itself, he shows further that if it fails,
then for any angle «, however small,
there would have to be a line [ entirely
contained inside the angle (Exercise
35.4).

Then he says “or, il répugne a la na- L
ture de la ligne droite”—it is repugnant
to the nature of a straight line—that
such a line should be entirely contained
within an angle!




NOTEIS. 279
powvail éire pid. (1'} C'est eette considération qui nons a
faitrevenir dans la géoe édition, 4 a simple marche d’Euclide,
¢n renvoyant aux notes pour la'démonstration rigoureuse.
¥n examinant les choses avec plus d'attention nous som-
mes resté convaincu que pour démontrer completement
notre postufetum il fallait déduire de la définition de Ia
ligue droite une propricté caractéristique de cette ligne qui
exclﬁtl toute ressemblance avee la forme d'une hyperbole
comprise enire ses deux asymptotes. Voici quél est i cet
égard le résultat de nos recherches.

Soit BAC un angle donné, et M un point donné au Adedans
de cet angle ; divisez Uangle BAC en deux cgalenient par la
f{!?‘ofre AD et du point M menez MP perpendiculaire sur A :
J€ dis que la droite MD prolongée dans un sens et dans Pautre,
renconirera nécessairement les deux cités de Uangle BAC,

Car si elle rencontre un des cotés de cet angle, elle ren-
conlrera l'autre, tout élant égal des deux cotés & partir du
point I'; si elle ne rencontrait pas-un edté, elle ne rencon-
trerait pas I'autre par la méme raison ; ainsi, dans ce dernjer
cas elle devrait étre renfermde tout entiére dans Pespace
compris entre les cotés de 'angle BAC; or, il répogne a la
nature de la ligne droite qu'une telle ligne, indéfiniment
prolongee , puissc étre renfermée dans un angle.

En effet, toute ligne droite AB tracée sur un plan, et in-
définiment prolongée dans les deux sens , divise ce plan en
deux parties qui étant superposces coincident dans toute
lenr étendue et sont parfaitement égales. La partie AMB du
vlan total, située d'un cdté de AB, est égale en tout a la

tie AM Dostew:. 3. .t .
par s - Pantra odté: earsil’on prend pn naine

(1)On voitdans un article du Philosaphical magazine demars 1823,
qu'un savant géométre a essayé de perfectionner cette démonstra-
tion et de¢ la rendre iudéperlidante de tout postelatun: ; mais la con-
struction employée pour démontrer Ja seconde partie consiste a
mener d’'un point donné différentes dJroites a tous les sominets
JLune ligne qu'on doit considérer comme polygonale , pour raisop .
ner dans I'hypothése de celui qui nic Ja proposition: orla convexité
de cctte Jigne, s1 elle avant lten § ne pcrmeilmil‘ pas de continuer
indéfiniment la construction de Vanteur, comnie il le fandrait poar
Pexactitude de sa démonstrauon.

fig. a4

Plate XII. Legendre's “proof” that through any point in the interior of an angle there is a
straight line meeting both sides. From his Eléments de Geométrie (1823).
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Proposition 35.5
In a Hilbert plane with (A), if Legendre's axiom holds for a single angle o, then also
(P) holds.

Proof Let the vertex of the angle be A, take any two points B, C on the sides of
the angle, and draw BC.

Now repeat the angle ACB at B, lay
off BD = AC, and join CD. Then by
(SAS) the new triangle BCD is congru-
ent to the triangle ABC. Applying Leg-
endre's axiom for the angle « to the
point D, let [ be a line through D meet-
ing the sides of the angle o at E and F.
By (1.27), AB is parallel to CD and BD is
parallel to AC. This implies that E and F
must lie beyond B and C, so that the
new triangle AEF contains both the tri-
angles ABC and BCD.

Suppose that (P) does not hold. Then by (35.4) and (34.7) the triangle ABC
has a positive defect d > 0. By the additivity of defect (34.8), the new triangle
AEF will have defect greater than 20. Repeating this process and using (35.1) we
would eventually have a triangle with defect greater than two right angles,
which is absurd. Therefore, (P) must hold.

A < F\

Proposition 35.6

In a Hilbert plane with (A), Aristotle’s axiom holds, namely, given any acute angle,
the perpendicular from a point on one arm of the angle to the other arm can be made
to exceed any given segment.

Proof Using (A), it will be sufficient to
show that if BC is one perpendicular
from one arm of the angle to the other, £
than there exists another such perpen-
dicular with DE = 2BC. To do this, we
proceed as follows. First mark off BD =
AB, and drop the perpendicular DE.
Then extend BC and drop a perpendic-
ular DF to the extended line. The verti-
cal angles at B are equal, so by (AAS), « al —_—
the triangles ABC and DBF are congru- # < 3
ent, and it follows that CF = 2BC.

Since we have assumed (A), the angle at D of the quadrilateral FCDE must
be acute, by (35.2), (34.7), and Exercise 34.2. Then by (34.2), DE > FC = 2BC, as
required.
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Exercises

Unless specified otherwise, the following problems take place in a non-Euclidean (i.e., (P)
is false) Hilbert plane satisfying Archimedes’ axiom (A).

351
35.2

353

35.4

355

35.6

35.7

358

Prove: Given any angle ¢ > 0, there exists a triangle with defect d < &

Discuss the following “proof,” due to Legendre, that the angle sum of a triangle is
two right angles: We have seen that for any triangle ABC, there is a triangle T), with
the same angle sum as ABC, and where T, has two angles less than or equal to
(1/27)(£ A) (35.2.1). In the limit, the two small angles will become zero, so the tri-
angle becomes a straight line, and the third angle will be 2ZRA. Thus the angle sum
of the original triangle must be 2RA.

Given an angle aAb, show that there
exists a point B in the ray Ab such that
the perpendicular to b at B does not
meet a.

Show that for any angle «, however small, there exists a line [ entirely contained in
the inside of the angle. Hint: Apply Exercise 35.3 to the angle bisector of «.

Given an angle o with vertex A, and
given a ray [ inside o, show that there
exists a point P on the ray [ such that
for any two points B, C on the two arms
of o, the line BC meets the ray [ inside
the interval AP.

Given an angle & > 0, show that there exists a triangle with angles «, 8, y, all three
smaller than e Hint: Use Exercise 35.4.

Show that Lemma 35.1 is false in the Cartesian plane over a non-Archimedean field.

A

If Aal|| Bb, show that the perpendicular
distance from a point P € a to the line b
is strictly decreasing as P moves away
from A, e.g.. in the diagram PQ > P'Q’.
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35.9 Prove the converse of Exercise 35.8, namely, if Aa and Bb are two rays that do not
meet on the same side of the line AB, and if the perpendicular distance from a point
Peatobis strictly decreasing as P moves along a away from A, then Aa is limiting
parallel to Bb. Hint: Use Proposition 35.6.

36 Non-Euclidean Area

The discussion of area arose quite early in the development of non-Euclidean
geometry. Gauss had already thought about area as early as 1799 (see Exercise
36.1), and Bolyai's fundamental treatise of 1832 has a number of results on area.
The defect of a triangle, as we will see, provides a natural measure of area,
which is absolute in that it does not depend on any arbitrary choice of unit in-
terval, as is the case for the Euclidean area function.

To make our treatment rigorous, we will tollow Hilbert's method, which we
used already for Euclidean area in Sections 22, 23. So recall that in any Hilbert
plane, two figures are called equidecomposable if they can be written as the
unions of congruent triangles. Two figures have equal content if one can add to
them equidecomposable figures so that the whole becomes equidecomposable.
We showed in Section 22 that both of these notions are equivalence relations.

In Section 23 we defined the notion of a measure of area function. In most
texts this is taken to have values in the real numbers, but true to our principle of
not imposing the real numbers on geometry, we prefer to have it take values in
a group that arises naturally. In the Euclidean case (23.2) we used the additive
group of the field of segment arithmetic. For the non-Euclidean case, we will use
an ordered abelian group (Section 23) whose elements are constructed out of
finite sums of angles.

To be precise, we proceed as follows. Recall first that in our development of
a Hilbert plane, an angle is simply two rays, emanating from a point, that do not
lie on the same line. Thus there is no zero angle, and every angle is less than
two right angles. We have defined addition of angles only when the sum is less
than 2RA (cf. Section 9). We define a set

A = {0} U {angles less than RA},
and we take
G=7ZxA
to be the direct product set. Define addition on G by

(ny + nz,on + 0(2) if orp + otz < RA,
(ny +mnz + 1,00 + oy — RA) if oy + oy = RA.

(1, 00) + (12, 02) = {
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In this definition, if either o«; or o is the symbol 0, we interpret it by setting
0+ o =05, and 0+ 0 = 0, etc. Define the lexicographic order on the set G by
setting

(n1,00) < (ng,0)

if either n; < n,, or Ny = ny and oy < o

Proposition 36.1
In any Hilbert plane, the set G defined above, with the operation + and the velation
<, is an ordeved abelian group.

Proof This is pretty much obvious, using the known properties of angles from
Section 9. The element (0,0) acts as zero element for the group. The inverse of
an element (n,«) is (—n,0) if « = 0; otherwise, it is (—n — 1,RA — ). The tri-
chotomy for the order relation follows from the corresponding fact for angles
(9.5).

Remark 36.1.1

There is a natural homomorphism of C
the group G to the group R of rotations
around a fixed point O of the plane,
defined as follows. Fix a ray OA ema- &
nating from O, and let the ray OC make
a right angle with OA. For any angle
% < RA, choose a ray OB inside the
right angle to represent «. Now send d A A

(1,0) € G to the rotation that sends A to 0

C; send (0,2) € G to the rotation that

sends A to B, and extend by linearity

(cf. Exercise 17.4 for facts about rotations). This homomorphism is surjective,
with kernel the subgroup Z generated by (4,0). Thus the elements of G corre-
spond to “rotations with winding number.” We will call G the unwound circle
group of the given Hilbert plane (cf. Exercise 17.6).

Example 36.1.2
In the real Cartesian plane, the group G is isomorphic to (IR,+), by sending
(1,0) to n/2 and (0, «) to the radian measure of .

Now that we have a suitable group for it to take values in, we can show
the existence of a measure of area function in non-Euclidean geometry. Recall
(Section 34) that the defect of a triangle is 2RA minus the sum of the three angles
of the triangle. For any angle 4, we identify it with (0,6) € G if < RA, or
(1,0 - RA) e Gif 6 > RA.
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Theorem 36.2

In a semihyperbolic Hilbert plane there is a measure of area function o with values
in the unwound cirele group G of the plane. It is uniquely determined by the addi-
tional condition that for any triangle T, its value is equal to the defect ¢ of the tri-
angle.

Proof For any figure P, we write P as a union of triangles T;, and define a(P) =
XJ(T;), where d denotes the defect of a triangle and the sum is taken in the
group G. Because of the semihyperbolic hypothesis this will be a positive ele-
ment of the group G. It gives the same value for congruent triangles, and it is
additive for nonoverlapping figures, so the only problem is to show that it is
well-defined. Any two triangulations of a figure can be refined by a third, so as
in (23.5), we need only show that x(P) is additive for an arbitrary subdivision of
a triangle into smaller triangles. The case of a triangle cut in two by a single
transversal is given in (34.8). This corresponds to Step 1 in the proof of (23.4).
The remaining steps of the proof of (23.4) are valid in our case also, and thus
o(P) is well-defined.

Remark 36.2.1
It now follows from (23.1) that equidecomposable figures and figures of equal

content have the same area. The property (Z) of Section 22, de Zolt's axiom, also
holds.

Remark 36.2.2

We will see later (Exercise 42.10) that in a hyperbolic plane, for any angle J,
there exists a triangle with area = d, so that the image of the measure of area
function « is just the set of positive elements of G.

To illustrate the theory of area, we will give the neutral geometry analogue
of Euclid’s (1.37), that “triangles on the same base and in the same parallels are
equal.” First we compare a triangle to a Saccheri quadrilateral.

Proposition 36.3
In a Hilbert plane, any triangle has equal content to a suitable Saccheri quadrilateral.
If furthermore we assume (A), the two are equidecomposable.

Proof We use the method of (34.6). The construction given there shows that the
triangle ABC is equidecomposable with the Saccheri quadrilateral FHBC if G lies
between F and H. If G lies outside the interval FH, the proof given shows that
they have equal content.
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Now let us assume (A), and let ABC
be any given triangle, with associated
quadrilateral FHBC. Join CD and extend
to A" so that CD = DA’. Join A'B. Then ¢
by (SAS) the triangles ACD and BA'D ny
are congruent. Leaving BCD fixed, this
gives a dissection of ABC into A'BC. Fur-
thermore, they have the same midline,

and the same Saccheri quadrilateral, B .
and D'D = DE = L FH (Exercise 36.6a).

Repeating this process a finite number of times, and using (A), we transform
the original triangle ABC by a finite succession of dissections into a new triangle
A*BC such that the foot G* of the perpendicular from A* to FH lies between F and
H. Then the method of (34.6) gives a dissection to the Saccheri quadrilateral.

Corollary 36.4

Triangles on the same base and with the

same nudline (cf. proof of (34.6)) have

equal content. Furthermore, assuming (A), A A
they are equidecomposable.

Proof Let ABC and A’BC be two tri- F H £

angles with the same base BC and the
same midline [. Drop perpendiculars
BF, CH to I. Then by the proposition,
both triangles have content equal to the g <
Saccheri quadrilateral FHBC, so they

have equal content to each other (22.3).

In the Archimedean case, they are equidecomposable.

Remark 36.4.1

Note how the Euclidean hypothesis “lying in the same parallels” of (1.37) has
been replaced by “having the same midline.” Of course, in the Euclidean case
this is equivalent, because A and A’ will lie on the same line parallel to BC. But
in non-Euclidean geometry, the locus of points A for which the triangle ABC has
midline [ is not a straight line: It is the set of points having the same distance
from [ as B and C, but on the opposite side of the line I. Given a line | and a seg-
ment d, we call the set of points at distance d from [ an equidistant curve (or
hypercycle). It has two branches, one on either side of I. So we could rephrase
this result as "Triangles on the same base BC, and having all three vertices
A, B, C on the same equidistant curve, B, C on one branch, A on the other, have
equal content.”
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Using ideas from the above proofs, we can now establish the non-Euclidean
analogue of the theorem of Bolyai-Gerwien (24.7). We start with the case of
triangles.

Proposition 36.5
In a semihyperbolic Hilbert plane satisfying (E), any two triangles of equal area have
equal content. If furthermore we assume (A), they are equidecomposable.

Proof We use the area function of (36.2), so that equal area means equal defect.
First let us consider the case where one side of the first triangle is equal to one
side of the second triangle. We label the equal sides BC, so we can call the tri-
angles ABC and A'BC. By (36.3) we can find Saccheri quadrilaterals FHBC and
F'H'BC that have equal content with the given triangles. Furthermore, the sum
of the two angles of these quadrilaterals at B, C are equal to the angle sums of
the triangles (34.6), hence equal to each other. Since the top angles of a Saccheri
quadrilateral are equal to each other (34.1), it follows that the angles at B and C
of the two quadrilaterals are the same, so the sides of the quadrilaterals lie on
the same lines.

If the line FG is not equal to the line - c’
F'G', then FGF'H' is a rectangle, which
is impossible in the semihyperbolic case F G
(34.7). So FG = F'G’, the two Saccheri
guadrilaterals are equal, and the two J
G C

triangles have equal content.

Now consider the case of two arbi-
trary triangles ABC and A’B'C’. Suppose
AB < A'B". Then 1A'B’ > BD, so using
the axiom (E) we can find a point D* on
the midline DE such that BD* = JA'B’". A A¥
Extend BD* to A* such that BD* =
D*A”. Join A*C.

Then ABC and A'BC are triangles

D) pP X E
with the same base BC and the same
midline. Therefore, they have equal
content (36.4), and also they have the
B <

same defect. On the other hand, A*BC
and A'B’C’' have one side equal A'B =
A'B’, and they have the same defect, so
by the previous case, thev have equal
content.
If we assume (A), the same proof works with equal content replaced by
equidecomposable.
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Theorem 36.6
In a semihyperbolic Hilbert plane with (E), any two rectilineal figures with the same
area have equal content. If furthermore we assume (A), they are equidecomposable.

Proof Suppose rectilineal figures P and P’ have the same area (36.2). Each one
can be written as a finite union of triangles. Subdividing some triangles if nec-
essary to increase the total number, we may assume that for some n, both P and
P’ are subdivided into exactly 2" trlang]ea Let P = U T;. Taking the triangles
two at a time, and using the lemma below, we ran find other triangles
T}’.’,j =1,...,2"7! such that P has equal content with ZU T;. Repeating this
process n tlm{’.‘: eventually we find a single triangle T, suth that P has equal
content with 2"T}.

Do the same with P'. Then there is a triangle T}, such that P’ has equal con-
tent with 2" T},

Since P and P’ have the same area by hypothesis, it follows that T and T}
have the same area. Then by (36.5), Ty and T; have equal content. Hence P and
P’ have equal content.

If we assume (A), the same proof works for equidecomposable.

Lemma 36.7

In any Hilbert plane with (E), if T and T, are two triangles, then there exists a tri-
angle T' such that Ty U T, has equal content with 2T (or, in case we assume (A),
T, U Ty is equidecomposable with 2T").

Proof By the method of proof of (36.5), we can replace one of the triangles by
another, so that now the two triangles have a side in common (and for this step
we use (E)). Next we will show that we can replace each triangle by an isosceles
triangle with the same base.

Given a triangle ABC, consider the
associated Saccheri quadrilateral FHBC, A A
and let KL be the line joining the mid-
points of the top and bottom (34.1).

Choose D' on KF such that KD’ = 1DE. F o b ONE o
Then extend BD' to A’ such that BJDrr 5
D'A’, and join A'C. As we have seen
above, ABC and A'BC have equal con-
tent (or assuming (A), are equidecom- O
posable). But furthermore, by construc- B L- <
tion, A'BC is isosceles (Exercise 36.6b).

Applying this construction to both T and T3, we can assume that they are
both isosceles on the same base. We put them together along their common base
(say Ty = ABC, T, = A’BC). Then the line AA’ divides T, U T, into two congru-
ent triangles, so we take T' = ABA’. Then T, U T, is equidecomposable with 27".
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A

AN

A

Remark 36.7.1

1t follows from (36.6) that if two figures in a semihyperbolic Hilbert plane with
(A) and (E) have equal content, they are equidecomposable —cf. (22.1.4). Indeed,
they will have the same area (23.1), using the area function of (36.2), and then
the theorem applies.

Exercises

36.1

36.2

Gauss, in a letter to W. (=Farkas) Bolyail in 1799, wrote, “If one could prove that
there is a triangle whose area is bigger than any given figure, then 1 could prove the
whole geometry.” Let us call this Gauss’'s axiom, that for any rectilineal figure,
there exists a triangle whose content is bigger than that of the figure. In a Hilbert
plane with (A), show that Gauss's axiom implies (P), as tollows:

(a) Show that there exist convex rectilineal figures with arbitrarily large area.
(b) Use (35.2) and (35.4) to get a contradiction if (P) does not hold.

Let ABC be an isosceles triangle, let A
D, E be the midpoints of the sides, and
let AG be the altitude that bisects DE

and BC. In a semihyperbolic plane with D =

(A): F

(a) Show that AG < 2AF.

(b) Show that BC > 2DE. § 3 >

(c) In the Euclidean case, the area of ABC would be four times the area of ADE. In
this case, show that there is no such multiple estimate for comparing the two areas,
in the following sense: For any given constant k > 1, there exists an isosceles trian-
gle ABC as above such that (area of ABC) < k-(area of ADE). (In order for multi-
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plication by k to make sense in the unwound circle group G, take k to be a dyadic
rational number, i.e., of the form a/2” for a, b integers.)

36.3 Let P be a polygon inscribed in a circle of radius r in a semihyperbolic plane. Show
that there is a polygon P’ inscribed in a circle of radius 2r having twice as many
sides as P and whose area is at least twice the area of P. This shows that the area of a
circle (if properly defined!) can become arbitrarily large.

C 1>

36.4 In a semihyperbolic plane, if a Saccheri
quadrilateral ABCD is cut by a diagonal
AD, show that the upper triangle ACD
has area greater than the lower triangle
ABD. Hint: First show that ' < f. i P '

36.5 In a semihyperbolic plane, let a triangle A
ABC be cut by its median AD. Assum-
ing that the triangle is not isosceles,
show that the half (in this drawing
ABD) containing the acute angle o at D
has greater area than the other half.

8 " D ' c
36.6 (a) In the situation of Proposition 34.6, show that DE = ] FH.

(b) In the proof of Theorem 36.6, verify that the triangle claimed to be isosceles is
indeed so.

36.7 We have seen that in the real Cartesian plane, the unwound circle group G is iso-
morphic to (IR, +) (36.1.2). This group is also isomorphic to the multiplicative group
(IR~gq, ), via the exponential map.

In the case of an abstract ordered field F, we have three ordered abelian groups nat-
urally associated with F: the additive group (F, +), the multiplicative group (F-q,-),
and the unwound circle group G of the Cartesian plane over F. We can ask which of
these may be isomorphic, as ordered abelian groups.

(a) Let F be the constructible field (16.4.1). Show that (F,+) is not isomorphic to
either (F.p,-) or G as an ordered abelian group. Hint: Think of dividing by 3 in each
group.

(b) Again with F the constructible field, show that if (F.;,-) is isomorphic to G, then
there can be only finitely many Fermat primes (29.4.1). (I have no reason to believe
that these two groups should be isomorphic, so do not get your hopes up that this
might be a way to prove the finiteness of the set of Fermat primes!)

36.8 Show that a Hilbert plane satisfies (A) if and only if its unwound circle group G sat-
isfies (A'): For any two elements a,b > 0 in G, there is an integer n such that na > b.

36.9 Modify the results of this section to derive a theory of area and content for a
semielliptic Hilbert plane, by taking the area of a triangle to be its excess § =
(sum of angles of triangle) — 2RA.
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37 Circular Inversion

In this section we will study circular inversion, which is a kind of transforma-
tion of the plane that leaves the points of a given circle fixed, and sends points
inside the circle to points outside and vice versa. While this study belongs in the
context of Euclidean geometry, it is a technique not used by Euclid. Perhaps this
is because the idea of a transformation of the plane, moving points to other
points, was foreign to the way of thinking of the Greeks. Euclid does use the
“method of superposition” to compare triangles in his proof of (SAS), but there
is no evidence that he thought of a rigid motion moving the whole plane onto
itself. Given that perspective it seems even less likely that the Greeks would
have seen any value in a transformation of the plane that does not even pre-
serve distances, in fact that does not even preserve proportion in figures. It
seems that the notion of transformation in geometry is a relatively recent
notion, which has come to serve very important roles, as we have seen in the
usefulness of the existence of rigid motion (ERM).

The theory of circular inversion can be developed purely geometrically
using the results of Euclid's Book III, but it will be more efficient to use the
theory of proportion (similar triangles) in our proofs. So in this section we work
for convenience in the Cartesian plane over a Euclidean ordered field F. Thus
we have Hilbert's axioms, including (P) and (E), and we can use the theory of
similar triangles (Section 20). The Euclidean hypothesis on F can be slightly
relaxed (Exercises 37.16, 37.17).

Definition

Let I' be a fixed circle in the plane (over
the field F as above...), with center O
and radius r. For any point A # O, draw
the ray OA, and let A’ be the unique A
point on the ray OA such that OA -
OA' =v*. (The dot in this equation
means products of lengths in the field
F.) Then we say that A’ is obtained from
A by circular inversion with respect to
the circle TI'.

Briefly, we will say that A’ is the inverse of A (with respect to the circle I).
Since the condition OA - OA’ = r? is symmetric in A and A’, this notion is recip-
rocal: A’ is the inverse of A if and only if A is the inverse of A’. We think of cir-
cular inversion in I'" as a transformation p = p,. defined for all points A # O,
which thus transforms the plane Il — {O} into itself by sending each point to its
inverse. From the definition it is clear that any point on 1" is sent to itself. Points
inside I" are sent to points outside I, and vice versa. As a point A approaches the
center of the circle O, its inverse gets farther and farther away, so in the limit,




37. Circular Inversion 335

the point O would have to go to infinity. Since we do not have infinity in our
geometry, we simply say that p is undefined at O. (Or if you like, you can imag-
ine completing our plane by a single point called infinity, and then O and o« are
interchanged —cf. Exercise 37.1 on stereographic projection for another inter-
pretation of this idea.)

Proposition 37.1 § 4
Let A be a point inside the circle . Draw
the ray OA. Let PQ be the chord of the
circle perpendicular to OA at A. Then the 5
tangents to ' at P and Q will meet the ray

OA at the point A’ that is the tnverse of A

with respect to T.

Q

Proof First note that the two tangents will both meet OA in the same point A,
by symmetry. Now, the right triangles AOAP and AOPA’ have the angle at O
in common, so they are similar. Hence corresponding sides are proportional. In
particular,

OA  OP

OP  0A"

Cross multiplying, we obtain
OA - OA" = OP* = 1%

Hence A and A’ are circular inverses in I

Remark 37.1.1

This proposition gives us a method of constructing circular inverses by ruler and
compass: If A is given inside I', draw OA, construct the perpendicular to OA at
A, let it meet I’ at P, draw the radius OP, draw the perpendicular to OP at P,
which will be the tangent line, and let this line meet OA at A’ (9 steps). Con-
versely, if the point A’ is given outside the circle, draw the two tangent lines
from A’ to I, join their points of tangency P, Q, and let the line PQ meet OA’ at
A (6 steps).

Next we will investigate what circular inversion does to lines and circles in
the plane.

Proposition 37.2
A line through O is transformed into itself by circular inversion. A line not passing
through O will be transformed into a circle passing through O, and conversely.
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Proof A line through O is transformed into itself by definition of circular
inversion.

Now let [ be a line not through O.
Let OA be the perpendicular from O to
I. Let A’ be the inverse of A, and let y be
the circle with diameter OA’. 1 claim
that the inverses of points on [ all lie on
v and vice versa. So let B be any point
on [. Draw OB and let it meet y at B’
Then OB'A’ is a right triangle (1I1.31). It
has the angle at O in common with the
right triangle OAB, so we have similar
triangles. Therefore, the sides are pro-
portional:

OB’ _ 04
0OA' OB’

Cross multiplying, we obtain
OB-0OB' = OA - OA'.

But A" was chosen to be the inverse of A, so OA-0OA' =712 Hence also
OB - OB' = r?, so B and B’ are inverse to each other. This shows that the circular
inversion transforms the points of the line [ to the points of the circle y (except
O) and vice versa.

Definition
When two circles meet (or when a circle meets a line) by the angle between
them we mean the angle between their tangent lines at that point (resp. the
angle between the tangent line and the other line).

Note that when two circles meet in two points, the angle between them is
the same at hoth points, because the two circles are symmetrical about the line
joining their two centers.

Proposition 37.3

If a circle y is perpendicular to T (at its intersection points), then y is transformed into
itself by circular inversion in I'. Conversely, if a circle y contains a single pair A, A’ of
inverse points, then y is perpendicular to I' and is sent into itself.

Proof First suppose that y is perpendicular to I', and let y meet I" at P and Q.
Then the radius OP is tangent to y, because radius and tangent of any circle are
perpendicular (111.18). Let A be another point of y and let OA meet y again at A’
Applying (I11.36) to y we obtain OP? = OA - OA’. {Actually, Euclid meant that the
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square on OP has content equal to the rectangle formed by OA and OA’, but
since we are working over the field F, we interpret this statement as lengths and
products (20.9).) Since OP = r, this shows that A and A’ are inverses. This holds
for any A on y, so y is sent into itself.

Now (using the same picture) sup-
pose, conversely, that y is any circle
passing through some pair of inverse
points A, A, Let y meet I" at P, and draw
OP. Since OP is a radius and A, A" are
inverse points, we have OA - OA’ = OP2.
But now by (II1.37), the converse of
(I11.36), it follows that OP is tangent to
v, which means that y and I are per-
pendicular at P (and hence also at their
other point of intersection Q).

Proposition 37.4
If v is a circle not passing through the center O of I, then the transform of y by
circular inversion is another circle y".

Proof This result is not so easy to prove directly (you can try if you like), so we
will resort to a trick. Suppose we are given a circle y not passing through O, and
assume that O is outside y, for the moment.

Draw OP tangent to y, and let I’ be
a new circle with center O, passing
through P. Then by construction y is
sent into itself by pp. Thus pp(y) =
pr-pr(y), and we are led to consider
the new transformation of the plane
0 =pq-pr. Let r=radius of I', and
r’ = radius of I'Y. For any point A, let
Al = pp(A),A” = p(A"). Then 6(A) =
A", By definition of inversion, OA -
OA' =r"? and OA'- OA" = %, Dividing,
we find that

0A" r?

OA 172’

50

OA" = k- 0OA, where k= —.




338 7. Non-Euclidean Geometry

This is a transformation that leaves
O fixed, and stretches points toward (or
away from) O in a fixed ratio k. It is
called a dilation with center O and ratio
k. In rectangular coordinates with center
at the origin it would be expressed by

X =k, -

It follows, either from thinking of the distance formula in terms of coordinates,
or by using the (SAS) criterion for similar triangles (20.4), that all distances are
changed by the same ratio k.

In particular, a dilation sends any circle (and its center) into another circle
and its center. It follows that p,.(y) = pp - pre(y) = 6(y) is a circle. (Warning: Even
though p-(y) is a circle, in general p. does not send the center of y to the center
of ')

In this proof we were assuming O outside y. If O is inside y, we leave you to
construct an analogous proof in Exercise 37 .4.

Now that we have seen that circular inversion preserves lines and circles
(every line or circle is transformed into another line or circle), sometimes turn-
ing a line into a circle, or a circle into a line, the next step is to show that cir-
cular inversion is conformal, i.e., preserves angles.

Proposition 37.5
Circular inversion is conformal: Whenever two curves meet (here “curve” means line
or circle), their transforms under circular inversion meet again at the same angles.

Proof First suppose that P ¢ I', and that
two curves (not shown) meet at P with
tangent lines [, m. Let P’ be the inverse
of P. Then we can find a circle 7y,
through P,P' and with tangent m at P,
and we can find a circle y, through P, P’
with tangent line [ at P. Now, by (37.3) y,
and p, are transformed into themselves.
Therefore, the original curves are trans-
formed into curves at P' tangent to y,
and y,, so they make the same angle as
at P, because when two circles y,,y, intersect they have the same angle at both
intersections. For this proof we need to observe that a line and a circle, or two
circles, are tangent if and only if they have just one point in common. Hence
the property of tangency is preserved by inversion.
If Pe I', we leave the special case to you (Exercise 37.5).
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For our last general result about the properties of circular inversion, we look
at what happens to distances. Of course, distances are not preserved, because a
very small distance near O will be transformed into a very large distance far
away. Even ratios of distances are not preserved, as you can see by simple
examples. However, a remarkable fact is that if we take four points, a certain
ratio of ratios of distances, called their cross-ratio, is preserved.

Definition
Let A,B,P,Q be four distinct points in the Cartesian plane. Their cross-ratio
(an element of the field F) is defined to be the ratio of ratios

AP BP
(AB,PQ) =+ —
AQ  BQ
which can also be written
AP BQ
AQ BP’

Proposition 37.6
Let A, B, P,Q be four distinct points in the plane, different from O. Then circular
inversion in I preserves the cross-ratio: If their inverses are A', B', P', Q', then

(AB,PQ) = (A'B", P'Q)).
Proof Given two points A, P and their inverses A', P/, we know by definition
that

OA-OA' =r* = OP-OP'".

Thus
0OA _ OP'
OP  0A"
Case 1 Suppose O,A,P are not col-
linear. Since the triangles AOAP and A7
AOP'A’ have the angle at O in common, 0 A
they are similar (20.4), and we conclude
that P’
AP OA P

- 1)

A'P' opP'

Case 2 1If O,A,P are collinear, then AP = OP— QA and A'P'= 0A'— OF'
Using the fact that in a field F,

we conclude the same result (1).
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Now if Q is another point, we find similarly that

A 0OA
A;Sr - OQ". (2)
Dividing, we get

AP AQ _OQ’

rva AIQ! - op'’

(3)
Now let B be another point. Working with P and Q as before, we obtain similarly

BP _ BQ 0OQ

B'P ' B:Q: - oP' '

(4)

So the expressions (3) and (4) are equal. Moving the primed letters to one side
and the unprimed letters to the other side shows that the cross-ratios (AB, PQ)
and (A'B’, P'Q’) are equal.

Remark 37.6.1

At this point I can just hear someone asking, “What is the geometrical signifi-
cance of the cross-ratio?” Although 1 first encountered cross-ratios as a senior
in high school, and have dealt with them many times since then, I must say
frankly that I cannot visualize a cross-ratio geometrically. If you like, it is magic.
Here is this algebraic quantity whose significance it is impossible to understand,
and yet it turns out to do something very useful. It works. You might say it was a
triumph of algebra to invent this quantity that turns out to be so valuable and
could not be imagined geometrically. Or if you are a geometer at heart, you may
say that it is an invention of the devil and hate it all your life.

Let me say a few words in defense of the poor cross-ratio.

In the present context of transtormations of the Euclidean plane, there are
rigid motions, which preserve distance. Then there are dilations, which do not
preserve distance, but do preserve ratios of distances. Then there is circular
inversion, which does not preserve distances or even ratios of distances. Since it
does preserve the cross-ratio, that particular ratio of ratios, it is the best we can
do. It is something to hang on to, a pillar of support, when the distances and
their ratios are changing all around us. In Section 39 we will use the cross-ratio
to define the notion of distance in the Poincaré model of non-Euclidean geome-
try: It plays an essential role there.

In projective geometry the cross-ratio is also important. A projectivity from
one line to another is defined as a composition of a finite number of projections
from one line to another in the plane. A projectivity preserves neither distances
nor ratios of distances, but it does preserve the cross-ratio (Exercise 37.14). In
fact, a fundamental theorem of projective geometry is that a transformation of
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one line to another in the projective plane is a projectivity if and only if it pre-
serves the cross-ratio of every set of four distinct points on the line.

If you have studied complex variables, the projectivities of the projective line
over the complex numbers correspond to the fractional linear transtormations of
the Riemann sphere € U {xc}, given by

, az+Db
z' = ,
cz+d

ad — be # 0.

If you are given four points A, B, G, D, there is always a fractional linear trans-
formation sending A.B,C to 0,1, . In that case the image of D, say 4, is the
cross-ratio of the original four points, in a suitable order.

Finally, if you have four points on a line, and you take signed distances (+ or
— depending on a chosen preferred direction), then the cross-ratio is equal to —1
if and only if the four points form a set of four harmonic points (Exercise 37.15).
This notion of harmonic points is also important in projective geometry.

The notion of cross-ratio already occurs in the work of Pappus (300 a.p.). It
came into prominence again in the early nineteenth century with the projective
geometry of Poncelet and Monge.

Exercises

Unless otherwise noted, the following exercises take place in the Cartesian plane over a
Euclidean ordered field F.

37.1 Stereographic  projection.  In  three-
dimensional space, imagine our plane
Il and a circle I' of radius r and center
O. Now take a sphere of radius 1, and
set it on the plane Il so that its south
pole is at O. Then stereographic projec-
tion associates to each point B of the
sphere, B # N = north pole, that point
of 1l obtained by drawing the line NB
and intersecting with I1. (In the limit,
N would go to infinity, so you can
think of the sphere as a completion
of the plane by adding the point N.)
Under this projection, the equator of
the sphere is mapped to the circle I

Show that circular inversion in the circle I' corresponds to the operation of reflec-
tion in the equator of the sphere, which interchanges the northern and southern
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hemispheres. In other words, if B is a point on the sphere, and B' its reflection in
the equator (same longitude, but latitude has changed from north to south or trom
south to north), then the projected points A, A" are inverses under inversion in I,

37.2 Prove that the following construction
with compass alone gives the inverse
of A in I' (provided that OA > lr):
Draw a circle with center A through O
to meet I' at P and Q. Then draw cir-
cles with centers P and Q through O to
meet at A’ (3 steps). (The diagram
shows A inside I, but the construction
works equally well if A is outside I'.)

37.3 Let [ be a line that meets the circle I' in A
two points A, B. Let y be the (unique) T
circle through O, A, B. Prove that y is
the transform of ! under inversion
in I A (]

37.4 Prove the other case of (37.4), namely,
if y is a circle containing O, then pp(y)
is a circle. For any points A, B on y, let
A’ B" be their inverses in I', and let
A", B" be the points where the lines
OA,OB meet y again. By (111.35) (cf.
(20.8)),

OA-OA" =0B-0B" =¢

is a constant independent of the points
A, B, depending only on O, .

Let us use signed lengths from O, so that ¢ < 0. Since OA - OA" = 72, then show that
OA" =k-OA" for a certain constant k < 0. Thus 3’ is obtained from the circle y by
dilation with a negative constant k. Conclude that p.(y) = 3’ is a circle.

37.5 If two lines or circles meet at a point Pe I', show that their two transforms by
circular inversion in I’ meet at the same angle at P.

37.6 If we identify the real Euclidean plane IR? with the complex numbers €, show that
the transformation z' = 1/z (where z =a + bi, Z=a — bi) is just inversion in the
unit circle |z| = 1.
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37.7 If A is a point inside the circle I', improve the ruler and compass construction of
the inverse of A given in (37.1.1) by constructing the circle through O, P, Q instead
of constructing the tangent line at P (par = 7 steps).

37.8 Given the circle I' and its center O, and given a line [, give a ruler and compass
construction of the circle p (1) (par = 7 steps).

37.9 Given I', given its center O, and given a circle y passing through O (but not given
the center of y), construct the line p(y) (par = 15 steps).

37.10 Given I" and its center O, and given a circle y not through O, construct the circle
priy) (par = 15 steps).

¥

37.11 Verity the following ruler-only con-
struction of the inverse of a point A
(7 steps): Draw OA, get R, 8. Draw any
line | through A meeting I' in P, Q.
Draw RP and SQ to meet at T. Draw
RQ@ and P8 to meet at U, Draw TU to
meet OA at A’ Show also that TU is
perpendicular to OA.

37.12 Verity the following 5-step construc-
tion for the inverse of a point A with
respect to the circle I'. Take a circle of
any radius with center A, to meet I' at
P and Q. Let AP and AQ meet I’ in
turther points R, 8. Join PS and RQ.
Their intersection is A’. (This works
equally well if A is inside I'.)

37.13 (a) Given four points A, B, P,Q, if you permute A and B, or if you permute P and
Q, the crossratio is replaced by its inverse: (BA,PQ) = (AB, QP) = (AB, PQ) .
(b) More generally, it A, B, P, Q are four points on a line, and if (AB, PQ ) = 4, then
the 24 possible permutations of the points give rise to 6 possible values of the cross-
ratio, namely
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37.14

37.15

37.16

37.17

(a) Given four points on a line I, and
given a point O not on 1, let the angles
at O subtended by AP, AQ, BP, BQ be
op, 0q, fip, fp. Use the law of sines to
show that

sin o sin
(aB,PQ) = 302 . S0fp

sing  sinfy’

(b) If the four points A, B, P,Q on | are
projected from O to four points O
A" B' P Q' on another line m, then
the cross-ratio is preserved:

(AB,PQ) = (A'B',P'Q").
Conclude that cross-ratio is preserved
by any projectivity, that is, a finite

succession of projections from one
line to another.

We say that four points A, B, P, Q on a line form a set of four harmonic points if their
cross-ratio (AB, PQ) is equal to —1.

(a) Given A, B, P, show that the fourth harmonic point Q is uniquely determined.
(b) Verity the following ruler-only X
construction of the fourth harmonic

point: Given A, B, P on a line 1, take a
point X not in the line. Draw XA, XB,

XP. Take any point ¥ on AX. Draw Y
BY, get W. Draw AW, get Z. Draw YZ, /\ T
w

: . . Z
get Q. Hint: Project the four points
A B, P,Q from X to the line YQ, and
then from W back to the original line 1
[, and use Exercise 37.14. A P 3 Q

(c) If A,B,P,Q are four harmonic points, show that Q is the inverse of P in the
circle with diameter AB.

If F'is a Pythagorean ordered field, we can still define inversion in a circle I' by the
same method as at the beginning of this section. If y is a circle with p.(y) = 3, show
that yp still meets I' in two points, even though we do not have the axiom (E).

Let F'be a Pythagorean ordered field, and let d be a positive element of F that has
no square root in F. We consider the virtual circle I' defined by the equation
x* 4+ y* = d. Since F is Pythagorean and \/d ¢ F, this equation has no solutions. So I
has no points. Nevertheless, it is useful to refer to I' as a virtual circle, because we
can still define circular inversion pin I" by the formula OA - OA" = d.
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(a) Show that the results (Propositions 37.2, 37.4, 37.5, 37.6) still hold for p.

(b) Show that a part of Proposition 37.3 holds: A circle y is sent to itself by p if and
only if it contains a pair of inverse points. In this case we say by abuse of language
that y is orthogonal to I'.
(c) Given O and given one pair A, A’ of inverse points by p, give a construction
with Hilbert's tools (Section 10) for the inverse B' of a point B. (Par = 4 if O, A, B
are not collinear.)

37.18 Give a new proof of Exercise 1.15 by doing a circular inversion with center P and
suitable radius, and solving the transtormed problem.

Poor John has lost his ruler. Can you help him do his construction problems (follow-

ing) using his compass alone?

37.19 Given two points A, B construct a third collinear point C with AB = BC (par = 4
steps).

37.20 Given two points A, B, construct the midpoint C of the segment AB (par = 7 steps).
Hint: Use Exercise 37.2.

37.21 Given two points A, B, construct C, D such that ABCD will be a square (par =8
steps).

37.22 Given points A, B, C, O, with O, A, B not collinear, construct the intersection points
of the line AB with the circle OC (assuming that they meet) (par = 4 steps).

37.23 Given noncollinear points A, B, C, construct the foot of the perpendicular trom C to
the line AB (par = 9 steps).

37.24 Given noncollinear points O, A, B, show that it is possible to construct the inter-
section of the circle OA with the line OB using compass alone. Hint: Perform a cir-
cular inversion that leaves the circle OA fixed and transforms the line OB into a
circle. (Par = 13 to get one intersection point.)

37.25 Given points A, B, C, D show that it is possible to construct the intersection point of
the lines AB and CD using compass alone. Hint: Use a circular inversion to trans-
torm the two lines into circles. (Par = 13 steps if the points are in favorable posi-
tiorn; otherwise 18 steps.)

37.26 Using the experience gained in the previous exercises, prove the following theorem
of Mascheroni: Any point that can be constructed from given data by ruler and
compass construction can also be constructed using compass alone.

38 Digression: Circles Determined by Three
Conditions

In order to specify a circle in the plane, you give its center, which is a point, and
its radius, which is a line segment, or distance. A point moves in a 2-dimensional
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plane, while the length of a line segment is a 1-dimensional quantity, so we can
say roughly that the set of all circles forms a three-dimensional family, or that a
circle depends on three parameters. If we are working in the Cartesian plane
over a Euclidean field F, then a general circle has an equation

[x—a)2+(y—b)2=r2,

where a, b,r are elements of the field F. In this case the circle is determined by
the three quantities a, b, r € F, so again it makes sense to say that a circle depends
on three parameters.

From this informal discussion it is reasonable that we can impose three con-
ditions and then expect to find a unique circle satisfying those three conditions.
Of course, there will be situations where this does not work. For example, you
cannot find a circle passing through three collinear points (unless you allow the
line containing the points to count as a limiting case of a circle). Another exam-
ple is, yvou cannot find a circle tangent to two given parallel lines [, m and pass-
ing through a point P not between the two lines.

In general, however, we can expect to find a circle satisfying three con-
ditions. Among conditions we can impose are:

(P) to require that the circle pass through a given point A;
(L) to require that the circle be tangent to a given line [;
(C) to require that the circle be tangent to a given circle y.

Furthermore, it is natural to expect that the required circle be constructible
by ruler and compass. In this way, taking all possible combinations of three
conditions of types (P), (L), and (C), we obtain the following ten construction
problems.

PPP. To construct a circle through three given points A, B, C. This is the
circumscribed circle to the triangle ABC.

LLL. To construct a circle tangent to three given lines [,m,n. This is the
inscribed circle or one of the exscribed circles of the triangle formed by I, m, n.

The remaining eight problems we designate as PPL, PLL, PPC, PLC, PCC,
LLC, LCC, and CCC, according to the conditions imposed. The last one, to find a
circle tangent to three given circles, is classically known as the problem of
Apollonius. Apollonius of Perga (c. 262-c. 200 B.c.) is best known for his book on
conics, but he also wrote a book On Tangencies, which is now lost, in which he
discussed this problem of the three circles. We know of Apollonius’s book from
the commentary of Pappus (1876), Book VII, Sections 11, 12. Based on this, Viete
made a restitution of the lost book of Apollonius, and later Camerer (1795)
edited both Pappus’'s commentary and Viéete's restitution with added work of his
own. One of Pappus's constructions was given in (5.11).

In this section we give another method for solving these problems, using
circular inversion.

Advice to the reader: The best way to study this material is to stop reading
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now, and attempt to solve each of these problems yourself. Then come back
for hints if you need some help. If yvou read on further, you will ind my solu-
tions, but I expect you will find other, perhaps even better, solutions on your
own.

As hints let me list the general techniques we will use. First of all, we use the
basic miniconstructions of three or four steps each that we have often used
before. With these techniques you should be able to solve problems PPP, PPL,
PLL, and LLL.

For the problems involving circles,
there is sometimes an easy method to
reduce one problem to another. For ex-
ample, in LLC, given two lines I, m and
a circle y with center O, we are trying to
find the small dotted circle tangent to
I,m, and y. Let ' and m’ be lines parallel
to I and m, and at a distance from [ and
m equal to the radius of y. Then the cir-
cle through O (the center of y) and tan-
gent to I’ and m' will have the same
center as the circle we are looking for
(verify!). Thus we can reduce LLC to
PLL.

In the most difficult problems we can make use of circular inversion. For
example, in CCC, the problem of Apollonius, by adding or subtracting the same
guantity to the radius of each circle, we reduce to a problem where two circles
meet. Let O be an intersection point of two circles, and let I be a circle with
center O. Perform a circular inversion in the circle I Then the two circles
through O are transformed into straight lines, while the third circle becomes
another circle. By LLC we can find a circle tangent to the two lines and circle
obtained by circular inversion: Applying a circular inversion I' to this newly
constructed circle, we obtain a solution to the original problem.

Of course, these constructions may get rather long, and in carrying them out
on a piece of paper with pencil or pen, the accumulated error may be greater
than what one could achieve by guessing. But that is not the point. The point is
to have a correct theoretical procedure that gives a mathematically exact answer
when carried out in ideal conditions.

Construction 38.1 (PPP)

To construct a circle through three given points A, B, C. The center of this circle
must lie on the perpendicular bisectors of AB and BC. So construct the perpen-
dicular bisectors (3 steps each) to get the center O, and then draw the circle (7
steps altogether). However, we can save one step by making one of our circles
do double duty:
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Circle center B, radius BC.

Circle center A, same radius. Get E, D.
Draw line ED.

Circle center C, same radius. Get F, G.
Line FG. Get O.

Nk wn =
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Construction 38.2 (LLL)

To find a circle tangent to three given
lines I;m,n. Let ABC be the triangle
formed by the three lines. The center
of the inscribed circle must lie on the
angle bisectors of the three angles. So
we bisect the angles at A and B to get
the center of the circle O. Then we drop
a perpendicular from O to one side to
find the radius, then draw the circle.
Adding miniconstructions comes to 13
steps. But with care, we reduce the con-
struction to 10 steps:

Bisect angle A, using circles centered at
A, B, D, all of radius AB (4 steps).

Bisect angle at B, using F,G (2 more
steps).

Perpendicular from O to AC, using H, I, K
Circle center O, radius OK (1 step).

Circle center O, radius OA, passes through B, C.

349

(3 more steps).
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Construction 38.3 (PPL)
To construct a circle through two given points A, B, tangent to a given line [
First draw the line AB to meet [ at P (1 step). If we imagine the circle already
drawn being tangent to [l at Q, then PQ is a tangent to the circle and PAB cuts the
circle, so by (IIL.36) PA - PB = PQ*. So our method will be to use this fact to find
Q, and then draw the circle. According to (I11.36) again, if we take any circle
through AB, the tangent from P to that circle will have the same length as PQ .
So let us bisect AB, using CD (3 steps) and get its midpoint E. Draw the circle
with center E passing through A and B (1 step). To find the tangent from P to
this circle, bisect PE, using F, G (3 steps) and get H. Draw the circle with center
H through P, E (1 step) and let it meet the circle through AB at K. Then PK will
be tangent to the circle. Find Q and [ with PQ = PK (1 step). Now to get the circle
through A, B, Q, bisect AQ (2 more steps), get O, and draw the circle with center
O through A, B, Q (1 step). Total: 13 steps.

Construction 38.4 (PLL)
To construct a circle through a given point A and tangent to two given lines [, m.
One method is to reduce to PPL as follows: Imagine a reflection in the angle
bisector of the angle at O. This will give a new point A’, symmetrically located,
and any circle through A tangent to I and m must also pass through A’. Thus we
need only construct the circle through A, A’ tangent to [ by PPL. We can con-
struct A’ in 2 steps: Circle center O through A, get B, C. Circle through C, radius
AB. Get A’. Then do PPL. Total: 15 steps.
Another method is to use the fact that circles tangent to two lines [, m are all
related by dilations from center O where [ and m meet. So this time our strategy
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is to construct any other circle tangent to [ and m, and then scale it down or up
80 as to pass through A. First bisect the angle at O, using B, C, D and circles all of
the same radius (4 steps). Get E,F where the circle with center B through O
meets [,m. Draw EF (1 step), which will be perpendicular to [, since it is con-
tained in a semicircle (I11.31). Get G, and draw a circle with center G and radius
GF (1 step). This is our comparison circle y’. Draw OA to meet y' at A’ (1 step).
The desired circle y will have center K on OD, and with KA parallel to GA’. So
construct AH parallel to GA’ (3 steps), and get K. Draw the circle y with center K
and radius KA (1 step). Total: 11 steps.

Construction 38.5 (PPC)

As an application of the use of circular inversion, we will construct a circle
passing through two given points A, B, and tangent to a given circle y. Since cir-
cular inversion sends circles to circles (or lines) and preserves incidence and
tangencies, any circular inversion will transform one of our ten problems into
another of our ten problems, and solving one is equivalent to solving the other,
since the constructed circle can also be transformed by the same circular inver-
sion. The point is to make a judicious choice of which circular inversion to per-
form so that our job becomes as simple as possible.

In this case, let A, B be the given points, and let y be the given circle. Draw
the perpendicular bisector of AB (using C, D, 3 steps) and let it meet y at O. (If it
does not meet y, then the construction will be longer.) Take the circle I' with
center O, passing through A, B (1 step) as our circle to invert in. Let I' meet y at
P,R. Draw the line I through P, R (1 step). Since y passes through 0,1 will be the
inverse of the circle y, while A, B are fixed, since they lie on I'. So we have the
new problem to find the circle é through A, B, tangent to . Suppose this is solved
by PPL (13 steps, not shown), and let Q be the point of tangency of ¢ with [. We
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find the inverse Q' of Q by drawing the line OQ and intersecting with y (1 step).
So the desired circle is the circle through A, B, and Q’. This is PPP. We need only
construct the perpendicular bisector of AQ’ (using E, F, 3 steps) to find G, and
then draw the circle with center G through A,B, Q' (1 step). Total: 23 steps.
Actually, in applying PPL, we already have the perpendicular bisector of AB, so
that saves 3 steps. Also, we do not need the actual circle y, only its point of tan-
gency Q with . That saves 3 more steps, so the count becomes 17 steps.

To complete this section, we will do a special case of LLC, and then show
how to use that to solve CCC, the problem of Apollonius. The remaining prob-
lems we will leave as exercises for the reader.

Construction 38.6
Given two parallel lines [,m, and given a circle y with center O, to find a circle
tangent to I, m, and .

The idea is to construct the line parallel to [ and m that is halfway between [
and m. The center of the desired circle will be a point on this midline whose
distance from the center O of y is equal to (its radius) + (radius y) depending on
whether we want a circle containing y or not.

Pick any point A on [, and draw circle with large enough radius to intersect
m at B, C (1 step). Bisect BC (3 steps) using A, D, get E. Circle with center E, ra-
dius AB to get F,G (1 step). Draw FG (1 step) and get H. This is the midline.
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Make HI = radius of y (1 step). Center O, radius EI, find K on the midline (1
step). Center K, radius EH, draw the required circle o, (1 step). Total: 9 steps. To
get another solution a;, center O, radius Al to get L. Center L, radius EH is g;. Of
course, there are two more solutions with centers K', L’ on the other side of O.

A 3

I

\\/
D

Construction 38.7 (The problem of Apollonius)
Given three circles y,,7,, and y,, with their centers O,, 0;, 03, to find a circle
tangent to all three given circles.

Note first that if we were not given the centers of the circles, we could find
them with little constructions of 5 steps each, so to make life a little easier for
ourselves, we suppose O;, Oz, 03 also given.

The idea is to expand the three circles by adding a fixed length to each of
their radii. This will not change the center of the circle in the middle tangent to
all three. (If we wanted a circle containing one of the y,, then we should subtract
from its radius.) Doing this expansion carefully, we can arrange that two of the
new circles are tangent to each other.

This first part of the construction goes as follows: Draw 0,03 (1 step), get
A, B. Bisect AB, using C,D (3 steps), get E. Draw O3E, get F' (1 step). Make
FF' = AE (1 step). Now draw the new circles y|: center Oy, through E; y5: center
O, through E; and y;: center O, through F (3 steps). Then, by this operation, we
have reduced to a special case of CCC where two of the circles are tangent (9
steps).

For the next stage of the construction, we will perform a circular inversion
in a circle I' with center E. This will transform y; and y; into two parallel
straight lines, and y will become another circle. It seems worthwhile to choose
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I' orthogonal to y§, because then v} will be sent into itself, saving us the trouble

of finding its image under the circular inversion.

Py
_ _ﬁ-
S
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So we proceed as follows: Bisect O3E using G, H (3 steps), and get K. Draw
the circle with center K, radius KE (1 step), and let it intersect y; at L. Draw the
circle I with center E through L (1 step). Then I’ will be orthogonal to 35, and so
will be left fixed by circular inversion in I'. Let I' meet 75 in M, N, and draw the
line I = MN (1 step). Let I' meet 3| in P,Q, and draw the line m = PQ (1 step).
Thus we have transformed y;, y}, 75 into I,m, and p;, and we have the new prob-
lem of finding a circle tangent to these three. Furthermore, since p; and y, were
tangent to O, their transforms I, m do not meet. In other words, | and m are par-
allel, so we have a case of (38.6) treated above. This portion of our construction
was 7 steps.

Now perform (38.6) to find a circle ¢ tangent to I, m, y;, and let the points of
tangency be R, S, T (9 steps). Actually, since we already have a line O,0; per-
pendicular to [ and m, we can get the midline in 3 steps instead of 6, thus saving
3 steps. So this part of the construction counts 6 steps.

The last stage of the construction is to transport back ¢ by the circular
inversion in I' to get a circle tangent to y{,75,75. Then for the same center we
can draw the desired circle t tangent to y,, 7, 5.

It is actually sufficient to pull back two of the points of tangency. Draw ER
and let it intersect y; at U (1 step). Then U is the inverse of R in I'. Draw ET and
let it meet p; at V (1 step). Now U, V are two of the points of tangency of a circle
(dotted) tangent to y{,y5.75. To find its center, draw O,U and O,V and let them
meet at X (2 steps). Now the circle t with center X and radius XY is the desired
circle (1 step). This last part of the construction is 5 steps. (In the drawing I also
found the inverse Z of § and drew O3Z to check for accuracy, but this is not
really part of the theoretical construction.) Total: 27 steps.

Exercises

Carry out the following ruler and compass constructions.

38.1 PLC. Treat as a special case of LCC.

38.2 LLC. Follow hint given earlier in text.

38.3 PCC. Treat as a special case of CCC.

38.4 LCC. Use a technique similar to the one we used for CCC to reduce to (38.6).

38.5 PPC. Do the general case, where the perpendicular bisector of AB does not meet y.

38.6 Describe how you would construct all eight solutions to the problem of Apollonius.

39 The Poincare Model

In this section we will show the existence of a non-Euclidean geometry, and
hence the consistency of the axioms of non-Euclidean geometry, by exhibiting a
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model for a non-Euclidean geometry. Ironically, our model of a non-Euclidean
geometry will be constructed within the logical framework of Euclidean geome-
try. So what we must do is to give an interpretation of the undefined notions of
geometry in the model: point, line, betweenness, and congruence for line seg-
ments and angles, and then we must prove that the axioms all hold in this
interpretation.

Our starting point will be the Carte-
sian plane I1 over a Euclidean ordered
field F. In this plane we fix a circle I’
with center O. (For a weakening of the
Euclidean hypothesis on F, see Exercises
39.25 F)

The points of our model (which we
will call P-points) will be the set of points
of Il inside I, not counting the points on
I. A P-line will be the set of all P-points
lying on a circle y that is orthogonal to
I, or that lie on a line through O. (To
keep our language straight, the words
point, line, circle will refer to the Eucli-
dean notions in I, and we will prefix a P
to any word to mean the corresponding
concept in the model we are building.)

Having thus defined the P-points and P-lines of our model, we can verify the
incidence axioms (11), (12), (13).

Proposition 39.1
The P-model satisfies (11), (12), and (13).

Proof For (11), suppose we are given
two P-points, A, B. If the line AB passes
through O, then it is a P-line containing
them and is the only such. If A, B, and O
are not collinear, let A’ be the inverse of
A under inversion in the circle I' (cf.
Section 37). Then there is a unique
circle y passing through A,A’, and B.
By (37.3), 7 is orthogonal to I, so that
portion of y that is inside I becomes a P-
line containing A and B. It is unique,
because again by (37.3), any circle y
orthogonal to I' that contains A also
contains A’
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The other two axioms (I12), existence of at least two points on a line and (I3)
existence of three noncollinear points, are obvious.

We see immediately that this geometry will be non-Euclidean because the
parallel axiom (P) does not hold.

Proposition 39.2

The parallel axiom (P) does not hold in the
P-model: There is a P-line y and a P-point
A such that there is more than one P-line
through A that is P-parallel to y. (Of course,
P-parallel means that two P-lines do not
intersect.)

Proof Take a P-line y in one part of our
P-plane and take a point A far away. Let
A’ be the inverse of A. Then (by 37.3)),
any circle through A and A’ will be or-
thogonal to I', so it gives a P-line passing
through A. There are many of these
that do not meet y, and these are all P-
lines through A that are P-parallel to 7.

Definition

If A,B,C are P-points on a P-line 7,
we define the P-betweenness relation
A = B* C as follows. Let O’ be the center
of y (which is always outside I'), draw
the line PQ, and project the points
A.B,C to points A’, B',C’ € PQ from the
point O'. Then we will say A = B = C (P-
betweenness) if and only if A"+« B"+ C’
on the line PQ (usual betweenness). If
A, B, C lie on a P-line that is an ordinary
line through O, we take the usual notion
of betweenness.

Proposition 39.3
The notion of P-betweenness for P-points satisfies axioms (B1)-(B4).

Proof Axioms (B1), (B2), and (B3) follow immediately from the corresponding
statements for ordinary betweenness on the line PQ. For (B4), taking into
account the circle-circle intersection property (E) in Il and noting that two cir-
cles orthogonal to I' can meet at most once inside I', we see that to say that P-
points A, B are on the same P-side of a P-line y is equivalent to saying that A, B as
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ordinary points are either both inside y or both outside y. Thus we can define the
inside of a P-triangle, and (B4) is clear.

Definition

We define congruence in our P-model as
follows. Two P-angles are P-congruent if
the Euclidean angles they define are
congruent in the usual sense. For line
segments, we proceed as follows. Given
two P-points, let the P-line joining them
be the circle y orthogonal to I'. Let y
meet I' in two points P,Q, and label
them so that P is the one closer to A.
For another pair of points A’, B’ lying
on a Pline y', label P',Q" similarly.
Then we say that the P-segment AB is
P-congruent to the P-segment A'B' if
the cross-ratio (AB,PQ) is equal to the
cross-ratio (A'B’, P'Q’) (cf. Section 37 for
cross-ratios).

Now the real work begins, to verify the congruence axioms. We start with
the easy ones.

Proposition 39.4
P-congruence satisfies axioms (C2)-(C5).

Proof (C2) is obvious from the definition, since congruence of segments is
defined by equivalence of associated guantities in the field.

(C3) requires a calculation. From the definition of cross-ratio it follows that
(AB,PQ) - (BC,PQ) = (AC,PQ) (verify!). So when two segments are added to-
gether, the associated cross-ratios multiply. From this (C3) follows immediately.

To prove (C4), laying off angles, first
suppose that we are given a point A
inside I and a line m through A. Let A’
be the inverse of A. Then there exists a
unique circle y passing through A and
A’ and tangent to the line m. By (37.3) »
is orthogonal to T'. This shows that there
exists a P-line at A with any given tan-
gent direction. Now, if an angle « is
given and a P-line J given at A, by (C4)
in Il there is a unique line m forming the angle o with § at A (and on a given
side of ). Then the P-line with tangent m gives the required P-angle at A, and is
unique.
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(C5) follows from the same statemnt for Euclidean angles, because congru-
ence of angles is the same.

Before proceeding to a discussion of the remaining axioms (C1), (C86), (E),
(A), and (D), we will establish the existence of rigid motion (ERM) in this
model. Recall from Section 17 that a rigid motion is a transformation of the ge-
ometry that preserves the undefined notions of point, line, betweenness, and
congruence. In our case, a P-rigid motion will be a transformation of the set of
points inside I' that is 1-to-1 and onto, sends P-lines to P-lines, and preserves P-
betweenness and P-congruence of angles and segments.

Proposition 39.5 (Existence of rigid motions (ERM) for the Poincare model)
There are enough P-rigid motions of the Poincare model so that:

(1) For any two P-points A, A’, there is a P-rigid motion sending A 1o A’

(2) Given P- -pomnts A, B, B, rhrjrf: is a P-rigid motion leaving A fixed and sending
the ray AB to the ray ABr

(3) For any P-line y there is a P-rigid motion leaving all the points of y fixed and
interchanging the two sides of 7.

Proof We start with the last property.
Given a P-line y, let p, be the circular
inversion in y. Since I' is arthogonal to
y,p, sends I' to itself (37.3). Also, the
inside of I' is sent to the inside of ', so
that the P-plane is mapped to itself, in a
way that is clearly 1-to-1 and onto. Since
circular inversion sends circles into cir-
cles (37.4) and is conformal (37.5), a
circle orthogonal to I' will be sent to
another circle orthogonal to T, in other
words, p, sends P-lines into P-lines.
(Note that this works also for the limit- 2
ing case of a line through O, which is
also orthogonal to I'))

Circular inversion clearly preserves betweenness (Exercise 39.1). It pre-
serves P-congruence of angles because this is the same as usual congruence
of angles, and inversion is conformal (37.5). Also, p, preserves P-congruence of
P-segments, because this is defined by the cross-ratio, which is invariant under
circular inversion (37.6). Finally, note that p, interchanges that part of the P-
plane that is inside y with that part that is outside ¥, 80 p, is a P-rigid motion as
required for the third statement of (ERM). Since it leaves the points of y fixed
and interchanges the sides of y, it is the P-reflection in y (Section 17).
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Next we will show that for any
A # O, there is a circle y orthogonal to I’ P
(a P-line) such that the P-reflection in y
interchanges O and A. Let A’ be the in- r
verse of A; let y be the circle with center p
A" that is orthogonal to I'. Then the 0 A A

construction (37.1) for the circle y, us-
ing the same diagram (!), shows that in- ¥

version in y sends A to O. Thus the P- \
reflection in y interchanges A and O. Q

Now, since a composition of P-rigid motions is again a P-rigid motion, given
two points A, A’, we can first send A to O as above, then send O to A’. The com-
position of these two reflections will be a P-rigid motion sending A to A’, which
proves (1).

Now suppose that we are given three points A, B, B". Let p be a P-rigid motion
taking A to O, and let p(B) = C, p(B') = C’. If we can solve problem (2) for
0,c,c’, iif)ther words,lfp&ere is a P-rigid motion € leaving O fixed and sending
the ray OC to the ray OC’, then p~'0p will solve the problem (2) for A, B, B’. So
we reduce to solving the problem for O, C, C’.

Let I be the angle bisector of angle
COC'. Then [ is a line through O, which
is also a P-line. The ordinary reflection
in I is clearly a P-rigid motion that
leaves O_ﬁ}'_({-ld and sends the ray OC to
the ray OC'.

This completes the proof of (ERM) for the Poincaré model.

Proposition 39.6
Axioms (C1) and (C6) hold in the Poincare model.

Proof Suppose it is required to find a point B’ on a P-ray emanating from a
point A" such that A’B’ is P-congruent to a given P-segment AB. By (ERM) =
(39.5), there is a Prigid motion ¢ taking A to A’ There is also a P-rigid motion
Y taking the ray @(E) to the given ray from A’. Then B’ = yip(A’) is a point
on the given ray, and AB = A'B’ because rigid motions preserve congruence.
Thus (C1) holds in the Poincaré model.

To show that (C6) holds, since we have already established (C1)-(C5), we
simply apply (17.1), which shows that under those circumstances, (ERM)
implies (C6).
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In order to discuss (E) in the Poincare model, we first need to identify what
is a P-circle. By definition, of course, it is the set of all P-points B’ such that the
P-segment A'B’, for a certain fixed point A’, is P-congruent to a given P-segment
AB. Since the definition of P-congruence of segments is not very intuitive, it is
not easy to see immediately what kind of curves these are. First we need a
lemma.

Lemma 39.7

If C, C" are two points inside I, not equal to the center of I, O, then the P-segment OC
(which is equal to the Euclidean segment OC, since the P-line joining O and C is just
the usual line OC) is P-congruent to the P-segment OC' if and only if OC is congruent
to OC' in the ambient Euclidean plane 11.

Proof Let P and Q be the endpoints of the diameter of I' passing through O and
C. Then the P-congruence of OC is determined by the cross-ratio

or cCpP

(0C,PQ) = — + =,

0oQ ca
Let r = radius of I and let x = Euclidean distance from O to C. Then the cross-
ratio is

r.rt+x r—x

r ¥—x ¥4 x

If C’ is another point, and if the distance from O to C’ is y, then we obtain
similarly

r—y
oc', P'Q') = .
( = Y

Thus, to say that OC is P-congruent to OC' is to say that
r—x r—y
r+x r+y

Cross multiplying, we obtain

¥y — X+ vy — XYy = rt+rx — ry — Xy,
80
2rx = 2ry.
Since our field has characteristic 0, this is equivalent to x = y, i.e., OC is con-
gruent to OC’ in the usual sense.

Proposition 39.8

Every P-circle is an ordinary circle that is entirely contained in the inside of ', and
conversely, every circle entively inside I is a P-circle. (Warning: The P-center of a P-
circle is usually not equal to its ordinary center.)
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Proof Given a P-circle { with P-center A’ consider a rigid motion @ that takes A’

to O. This will transform ( into a P-circle with P-center O. Since P-congruence

and ordinary congruence are the same for segments beginning at O by the

lemma, this image #(() is an ordinary circle with center O. Then 67" will carry

this ordinary circle back to the given P-circle {. Now observe that in the proof

of (ERM), all the rigid motions we needed were made out of compositions of P-

reflections (which are circular inversions in suitable circles) or reflections in a

line through O. Since all of these transformations send circles into circles (37.4),

it follows that { is a circle. Since the transformed circle was a circle around O

entirely contained inside I', the image is also entirely contained inside T'.
Conversely, given an ordinary circle

{ completely contained inside I', with -

(ordinary) center O, draw OO’. Let it

meet { at A, B. P-bisect the segment AB

at A', and choose a P-reflection p, that

sends A" to O. Then p,({) will be a cir-

cle, the images of A and B will be equi-

distant from O, and this circle will be

symmetric about the line I = O0’, which

is sent into itself by p,. Hence p.({) is a

circle with center O, which is also a P-

circle. Applying p!, it follows that the

original circle { is a P-circle with P-

center C.

Proposition 39.9
The circle-circle intersection property (E) holds in the Poincare model over a
Euclidean ordered field F.

Proof Since P-lines and P-circles are all either usual circles or lines through O,
and since betweenness is the same in the P-model as in the ambient Euclidean
space, (E) in the P-model follows directly from (E) in the Cartesian plane II, and
this in turn follows from the Euclidean hypothesis on F (16.2). Since P-circles are
usual circles entirely contained inside I', there is no problem about any of the
intersections falling outside T.

For the next proposition it will be convenient to introduce the notion of a
distance function. In ordinary Euclidean geometry the distance function assigns
to each interval a positive number, and adding segments corresponds to adding
numbers. More generally, we make the following definition.

Definition
A distance function on a Hilbert plane is a function d that to each segment assigns
an element of an ordered abelian group G such that




39. The Poincaré Model 363

(1) d(AB) > 0 for any segment AB.
(2) d(AB) = d(A'B’) if and only if AB =~ A’B".
(3) if A = B= C, then d(AC) = d(AB) + d(BC).

If the group happens to be written multiplicatively, we will call it a multiplicative
distance function. The usual distance function on the Cartesian plane over a
field F (Section 16) is an additive distance function with values in the additive
group of the field (F, +)

Lemma 39.10
In the Poincaré model over a field F, the function u(AB) = (AB,PQ)”" is a multi-
plicative distance function with values in the multiplicative group of the field (F.q, -).

Proof Because of our convention that P is the endpoint closer to A, the cross-
ratio (AB,PQ) is in the interval (0,1) in F. Therefore, u(AB)>1. We
have already used it to define congruence, and we have seen that it is multi-
plicative (proof of 39.4). Hence p is a multiplicative distance function.

Proposition 39.11

Archimedes’ axiom (A) will hold in the P-model if we assume Archimedes’ axiom (A')
for the field F. Similarly, Dedekind's axiom (D) will hold if we assume (D') in the
field. (Cf. (15.4) for (A') and (D').)

Proof Using the multiplicative distance function g of (39.10), Archimedes' axiom
in the P-plane is equivalent to the following statement in F: Given ¢,d e F,
¢,d > 1, 3n > 0 such that ¢" > d.

We will show that this property is a consequence of Archimedes' axiom (A”)
tor F. Write c =1+ x, so x € F,x > 0. Then

¢" = (1+4x)" =1+ nx + positive terms > 1 + nx.

Now (A') says that for some n,nx > d. Hence also ¢" > d, as required.

For Dedekind's axiom, (D'} in F implies (D) in Il (15.4), and this clearly
implies (D) in the P-plane because of the way we defined betweenness by pro-
jecting onto a line segment. (For a converse to (39.11), see Exercise 39.7.)

Proposition 39.12
For any point A and any ray Bb in the Poincare model, there exists a limiting parallel
ray (cf. Section 34) Aa to Bb.

Proof Let the P-ray Bb meet the defining circle I' of the Poincaré model in a
point Q. Let A’ be the circular inverse of A in I', and let y be the circle through
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A,Q, A" Then y defines a Pline, and we take Aa to be the Pray of that P-line
having Q at its end. Then it is clear that Aa and Bb are limiting parallel rays in
the Poincaré model.

Using a little Euclidean geometry in the ambient Cartesian plane, we can
derive a marvelous relationship between the length of a segment and the angle
it makes with a limiting parallel.

Proposition 39.13 (Bolyai's formula)
Suppose we are given in the Poincare
model a point P, a line 1, the perpendicular

PQ to I, and a limiting parallel line m, P
making an angle o with PQ . p,
Then
tan = = (PO w
an 7 = u(PQ) ",
where the tangent is understood to be of Q L

the corvesponding Euclidean angle, and p
is the multiplicative distance function. The
equality takes place in the field F.

Proof We may assume that the Poincare model is made with a circle I' of radius
1 (cf. Exercise 39.23). We can move P, Q, I, m so that Q becomes the center of T',
the line [ becomes a radius QA, and P lies on an orthogonal radius QB. The lim-
iting parallel through P to I will be part of a circle A, orthogonal to T at A. Its
center therefore is at a point C = (1,¢) on the line x = 1. Let P be the point (0, y).
Then CP = CA, so

2= (c—y)2+1.

Therefore,

1+ y?
-ty 1
©="7y (1)

Draw a diameter EF of A parallel to the x-axis. Then the angle o between our
limiting parallel and PQ, called the angle of parallelism of the segment PQ, is
equal to the angle PCF. If we draw EP, then the angle PEF = /2 (111.20). Now

c— Yy
c+1°

o
tan - = DP/DE =
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Substituting from (1) we obtain

tan 2= 17 Y
anz—l Fy
[F_|P < E\
7 d
B
A
r P
Ed
Q A 1
G

On the other hand, the multiplicative distance function is

u(PQ) = (PQ,BG)™
_ (PB QB !
TA\PG QG

C(1-y 1\
S\l y 1
1+y

1—-y

From (2) and (3) we conclude that

tan % = ;:(PQ)_l,
as required.

Remark 39.13.1

365

From this it follows that given any angle « less than a right angle, there exists a
segment PQ with angle of parallelism equal to «. Indeed, tan(x/2) will be an el-
ement of the field F, and then we can find a y e F satisfying (2) above. In par-
ticular if we take o = IE RA (one-half right angle), there will be a corresponding
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segment PQ uniquely determined up to congruence. In this sense there is an
absolute standard of length in the Poincare model, whereas in Euclidean geom-
etry the choice of unit length is arbitrary.

Exercises

All exercises take place in the Poincaré model over a Euclidean ordered field F, unless
otherwise noted. Proofs should be based on the Euclidean geometry of the Cartesian
plane over F. In particular, do not use any of the results of Section 34 or Section 35 that
depend on Archimedes’ axiom.

39.1 Verify that circular inversion preserves betweenness in the Poincaré model (cf.
proof of Proposition 39.5).

39.2 Show that the angle sum of any triangle in the Poincaré model is less than 2RA so
this geometry is semihyperbolic {Section 34).

39.3 For any angle «, show the existence of a line entirely contained inside the angle «
(ct. Exercise 35.4).

39.4 Show that for any angle o < 60° there exists an equilateral triangle with all of its
angles equal to o.

39.5 If an equilateral triangle has sides equal to AB and angles equal to o, show that

2a 2t2
1+a2 1-—1t2

]

where a = pu(AB) is its multiplicative length, and where t = tan(«/2) (cf. Example
42.3.2).

39.6 Given any three angles o, fi,y with
o+ f 4y < 2RA, show that there ex-
ists a triangle with angles «, f.y in the
Poincaré model. Hint: First show in
the Cartesian plane that you can find (x
an angle o meeting a circle at angles
and y. Then shrink or expand this fig- el ¥
ure so that it becomes a triangle in the T

Poincaré model.

39.7 Prove the converse of Proposition 39.11, namely, if (A) or (D) holds in the Poincaré
model, then (A') resp. (D’) holds in F.
—_—
39.8 1f two lines are parallel, but not limit- T‘//
ing parallel, then they have a unique
common orthogonal line. =}
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39.9

39.10

39.11

39.12

For any angle #, there is an enclosing
line, which is a line limiting parallel to
both arms of =.

Give an alternative proof of (Cl) in
the Poincaré model, without using
rigid motions, as follows. Given a
point A, a P-line y, and given a quan-
tity be F, 0 < b < 1, we need to find a
point B € y such that

(AB, PQ) = b.

Do this by showing that in Euclidean
geometry, the locus of points B such
that BP/BQ is a given ratio ke F is a
circle. Then use (E), in the Cartesian
plane, to show that this circle inter-
sects y and thus find the required B.

Given the circle I, its center O, and another circle { entirely contained inside T,
give a ruler and compass construction (in the ambient Euclidean plane) of the P-
center { regarded as a P-circle (ct. Proposition 39.8).

(Euclidean geometry). Find all possi-
ble ways of filling the entire Euclidean
plane with triangles satistying the fol-
lowing conditions:

(a) The triangles are all congruent to
each other. There is no overlap, and
they fill the entire plane.

(b) At each wvertex of the triangula-
tion, all the angles are the same
(though they may be different from
the angles at a different vertex).

VAVAVAY

We consider two “ways” of filling the plane “the same” if one can be moved to
the other by a dilation followed by a rigid motion.

One such triangulation is shown, where the angles at each vertex are all 60°.
This is the only possibility if all angles are equal. Expect to find three more ways,
allowing angles at different vertices to be different, and prove that you have found

all possibilities.
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39.13 In the Poincaré model of non-Euclidean geometry, show, in contrast to the Eucli-
dean situation described in Exercise 39.12 above, that there are infinitely many
different ways to cover the P-plane by congruent P-triangles satistying properties
(a) and (b).

In particular, prove that the plane can be covered by equilateral triangles with
all angles equal to 45° and with eight meeting at each vertex. If AB is a side of one
of these triangles, find p(AB).

Draw a big circle I on a piece of paper, and then accurately draw enough of
these P-triangles inside I to show how they cover the whole P-plane. (This drawing
can be accomplished entirely by ruler and compass, but don't bother listing the
steps, except to show how vou got the first triangle.)

Congruent, isosceles, 72°-45°-45° triangles, filling up the Poincarée model of
the non-Euclidean plane (cf. Exercise 39.13).

39.14 In the Poincaré model made inside a circle ' in the Cartesian plane over F, we
have seen that any Euclidean circle y entirely contained inside I' is a P-circle

(Proposition 39.8).
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39.15

39.16

39.17

(a) If y is a Euclidean circle inside |
and tangent to I', show that there is a
pencil of limiting parallel lines (a pen-
cil means the set of all lines that are
mutually limiting parallels at one end)
such that the curve y is orthogonal to
all the lines of the pencil. Such a
curve is called a horocycle in the Poin-
caré model.

(b) If y is a Euclidean circle that cuts
I' at points P,Q, let [ be the P-line
having the endpoints P, Q. Show that
the points of y inside I' form a curve
of points equidistant from the P-line [.
Such a curve is called an equidistant
curve or hypercycle.

(c) Given any three distinct points A, B, C in the Poincaré model, show that they
are contained in a unique P-line or P-circle or horocycle or hypercycle. (Contrast to
Euclidean geometry, where only the first two possibilities occur.)

Show in the Poincaré model that it is in general not possible to trisect an angle (i.e.,
if o is an angle, the angle Lo may not exist) (cf. Section 28).

Show in the Poincaré model, in contrast to the Euclidean case (Exercise 2.14), that
it is in general not possible to trisect a line segment (i.e., the 3-division points may
not exist).

In the Poincarée model, show that if
two altitudes of a triangle meet in a
point, then the third altitude also
passes through that point. Here is a
method. Let the triangle be ABC, and
suppose that the altitudes from A and
B meet. By a rigid motion of the Poin-
caré plane we move that meeting
point to the center O of the defining
circle I'. Then those altitudes become
Euclidean lines through O. We must
show that the line OC is orthogonal to
the side AB.

The P-lines AB, AC, BC are Euclidean circles orthogonal to I'. Let D, E, F be the
centers of these circles. Show that the altitudes of the P-triangle ABC are at the
same time altitudes of the Euclidean triangle DEF. Then use the Euclidean theo-
rem that the altitudes of a triangle meet [ Proposition 5.6) to finish the proof.
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Note: This is a curious method, whereby the Euclidean result is used to show
(via Euclidean geometry) that the same result holds in the non-Euclidean Poincare
model. Since we now know that this result holds in both Euclidean and non-Eucli-
dean geometry, it would be nice to have a single proof in neutral geometry that
applies to both cases—cf. Exercise 40.14 and Theorem 43.15.

39.18 Show that the result of Exercise 1.15 is also valid in the Poincaré model, by moving
the figure so that P becomes the center of I and using the Euclidean result already
proved. Can you find a proof in neutral geometry that will cover both cases at
once?

39.19 Prove a non-Euclidean analogue of
(LI1.36) in the Poincaré model, as fol- P
lows. Let P be a point outside a circle

7, let PA be a tangent to p, and let PBC B <
be a secant. Let a = pu(PA), b = u(PB),
and ¢ = u(PC). Then Y

Hint: Move P to the center O of the Poincare model, use the Euclidean (111.36) —cf.
Proposition 20.9—and compute g as in the proof of Proposition 39.13.

39.20 In the Poincaré model, if three circles
each meet the others in two points,
show that the three radical axes (Ex-
ercise 20.4) meet in a point.

(a) One method is to suppose that two
of the radical axes meet in a point A.
Move that point to O, and use the Eu-
clidean result (Exercise 20.5). ~

S

(b) Another method is to use Exercise 39.19 to define the power of a point with re-
spect to a circle, and imitate the proofs of Exercises 20.4, 20.5.

39.21 There is another model of a non-
Euclidean geometry, due to Felix
Klein, constructed as follows. In the
Cartesian plane over a field F, fix a
circle A. Then the K-points are the
points inside A, and the K-lines are
chords of Euclidean lines contained
inside A. In this model the incidence
axioms (I11)-(I13) and the between- A
ness axioms (B1)—(B4) are immediate,
taking betweenness to be the same as
in the Cartesian plane.
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39.22

39.23

39.24

However, the model is not conformal (i.e., angles are not the same as Eucli-
dean angles), so the definition and properties of congruence for line segments and
for angles are more complicated. Rather than doing this directly, we will show in
this exercise how to obtain the Klein model from the Poincaré model.

Let A be a circle of radius 1 centered at the origin, and in the Cartesian 3-space,
place a sphere of radius 1 on the plane, with its south pole at the origin (cf. Exer-
cise 37.1). Let I' be the circle of radius 2 centered at the origin. For each K-point
inside A, project it straight up to obtain a point of the southern hemisphere of the
sphere, and then use the stereographic projection (Exercise 37.1) from the north
pole to obtain a P-point inside I

Show that this transformation gives a 1-to-1 correspondence between the points
of the K-plane inside A with the points of the P-plane inside I', which sends K-lines
to P-lines and vice versa. Then we can transport the notions of congruence for P-
segments and P-angles to the K-plane, so that the K-plane becomes a model of a
non-Euclidean Hilbert plane, isomorphic to the Poincaré model.

It ABC is a triangle having a circum-
scribed circle, prove that the medians
of ABC meet in a point, as follows.
Use the Klein model (Exercise 39.21)
and place the center of the circum-
scribed circle at the center O of the
circle A. Then the perpendicular
bisectors of the sides of ABC become
diameters of the circle A. Conclude
that the K-midpoints of the sides of
the triangle are equal to the Euclidean
midpoints, and then use the Euclidean
theorem about medians in the ambi-
ent plane.

In the Cartesian plane over the field F, let I be a circle of radius r centered at the
origin, and let " be a concentric circle of radius r'. Consider the map ¢ from the
set of points inside I to the set of points inside ' given by

x' = kx,
{ Y =ky,
where k=71'/r. Show that ¢ gives an isomorphism of the Poincaré model made
with I' to the Poincaré model made with ', which preserves the multiplicative
distance function of Lemma 39.10. Conclude that if I’ and I’ are any two circles in
the Cartesian plane over F, the associated Poincareé models are isomorphic Hilbert
planes.

Let F be a non-Archimedean Euclidean field such as the one described in Proposi-
tion 18.4. Let 11 be the Poincaré model over F and let 11 be the subset of points that
are at finitely bounded multiplicative distance g from some fixed point O. Show
that Il is a non-Euclidean Hilbert plane with properties (a) and (b) below.
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(a) The angle sum of any triangle is less than 2RA, so it is semihyperbolic.
(b) Limiting parallel rays on distinct lines do not exist.
(

c) Let 111 be the subset of those points of Il whose distance from O is in-
finitesimal. Show that Iy is another Hilbert plane satistying (a) and (b) above.

(d) Show that Iy and I, are not isomorphic Hilbert planes.
Compare Exercises 18.3-18.6.

39.25 In this and the following exercises we investigate the Poincaré model over a field
that need not be Euclidean. Let Fbe a Pythagorean ordered field, let d e F, and let
I' be the circle x* + y? = d, which may be a virtual circle if v/d ¢ F ( Exercise 37.17).
We define the Poincaré model in ' as in the text. The interior of I' is the set of points
(%, y) with x? + y* < d. These are the P-points. The P-lines are segments of circles y
orthogonal to I" (which means stable under circular inversion in I' ( Exercises 37.16,
37.17)) as before.

(a) Show that the incidence axioms (11)-(13) holds, as in Proposition 39.1.

(b) If'yis a P-line, the intersection points P, Q of y with I' may not exist, but the line
PQ is still well-defined: It is the perpendicular to OO’ at the inverse of O', where O’
is the center of y. So we can define betweenness as before. Show that betweenness
satisfies axioms (B1)-( B3) as in the text.

39.26 With hypotheses as in Exercise 39.25, now suppose that F satisfies the additional
condition (+d): For any a € F, if a® —d > 0, then Va2 —de F.

(a) Show that the circle-circle intersection property (E) holds for circles y,d or-
thogonal to I'. Hint: Write the equations of 3,4, and show that the square root
needed to find their intersection exists because of condition (xd).

(b) Conclude that axiom (B4) also holds in this model.

39.27 Continuing with the situation of the two previous exercises, if y is a P-line, the
points of intersection P, Q with I' do not exist, but at least they have coordinates in
the field F(v/d). Hence we can compute the crossratio (AB, PQ) in that field, and
define congruence of angles and segments as in the text.

(a) Using condition (#d), show that for any point A’ outside I', there exists a circle
with center A’ and orthogonal to I".

(b) Verify that Propositions 39.4, 39.5, 39.6 hold in this model, so it is a Hilbert
plane. We call it the Poincaré model in the (virtual) circle x* + y* = d. You will
need part (a) of the proof of Proposition 39.5.

39.28 In the model of Exercise 39.27, if vd ¢ F, show that there are no limiting parallel
rays on distinct lines, but that any two parallel lines have a common orthogonal.

39.29 For an example of a field F satistying the conditions of Exercises 39.25-39.28, let K
be a Pythagorean ordered field, for example the field of constructible real numbers;
let F'= K((z)) be the field of Laurent series over K (Exercise 18.9); and let d = z.
Verify that d > 0, v/d ¢ F, and that F satisfies condition (xd).
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39.30 For an Archimedean example of a field as in Exercise 39.29, let F be the field of all
those real numbers that can b( expressed using rational numb( rs and a finite
number of operations +,—,-, ~,a+— V1 +a?, and a— Va? — pr(wld( d that
at — v"E = (.

(a) Fis a Pythagorean ordered field, d = v2 is in F, and F satisfies condition (d) of
Exercise 39.26 for d = /2.

(b) Let ¢: Q(v2) — R be the homomorphism that makes ¢(y/2) = —/2Z. Show
inductively that ¢ extends to a homomorphism ¢ of F' to R.

(c) since ¢(v/2) < 0, conclude that /2 cannot be a square in F.

39.31 Show that in the Poincaré model in the virtual circle x? + yz = /2 over the field F
of Exercise 39.30, not every segment can be the side of an equilateral triangle, as
follows.
(a) Ifxe F with 0 < x and x* < /2, let AB be the segment from (0, 0) to (x,0) in the
Poincare model, and show that

\/_ + X

\/Z —x

(b) If there is an equilateral triangle with side AB, let the angle at a vertex be 2,
and let t = tan(«/2). Use Exercise 39.5 to show that

VZI-% 1 \/7
t= 6 — 2222 — x*
5\/_+x5 32 +

(c) Now take a suitable x, such as x = \/E — 1, and use an argument similar to the
previous exercise to show that the corresponding t is not in F. Hence the equilat-
eral triangle with side AB does not exist. Hint: For these two exercises, it may be
useful to review the techniques used in Exercises 16.10-16.14.

H(AB) =

40 Hyperbolic Geometry

In the earlier sections of this chapter we have seen something of the develop-
ment of neutral geometry and the study of the angle sum of a triangle using
Archimedes' axiom. We have also seen the Poincare model of a non-Euclidean
geometry over a field. For the full development of the geometry of Bolyai and
Lobachevsky, we need the limiting parallels. The existence of these limiting
parallels, which we have seen in the Poincare model (39.12), does not follow in
the axiomatic treatment from what we have done so far (Exercises 39.24, 39.28).
Therefore, following Hilbert, we will take the existence of the limiting parallels
as an axiom. This axiom is quite strong. It will allow us to develop non-Euclidean
geometry independently of Archimedes' axiom. It also allows the construction of
an ordered field out of the geometry (Section 41), and a proof that the abstract
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geometry is isomorphic to the Poincare model over this field (Section 43). Using
coordinates from this field we can develop non-Euclidean analytic geometry and
trigonometry (Section 42).

So at this point we start the axiomatic development of hyperbolic geome-
try, which is essentially the “classic” non-Euclidean geometry of Bolyai and
Lobachevsky, freed from hypotheses of continuity. In particular, we will not use
the circle-circle intersection axiom (E) nor Archimedes’ axiom (A). Instead, we
use Hilbert's axioms of incidence, betweenness, and congruence plus the fol-
lowing hyperbolic axiom (L):

L. For each line [ and each point A not
on [, there are two rays Aa and Aa’
from A, not lying on the same line, and
not meeting [, such that any ray An in
the interior of the angle aAa’ meets L.

Note that (L) immediately implies that the geometry is non-Euclidean, be-
cause the two rays Aa and Aa’ lie on distinct lines through A that will both be
parallel to I.

Definition
A Hilbert plane satisfying (L) will be called a hyperbolic plane, or a hyperbolic
geometry.

We will see shortly (40.3) that the angle sum of a triangle in a hyperbolic
plane is less than 2RA, so this terminology is consistent with the term semi-
hyperbolic introduced earlier (Section 34).

Recalling the definition of limiting parallel rays from Section 34, we see that
if we pick any point B on [ and let Bb, Bb' be the two rays from B lying on [, then
Aa will be limiting parallel to Bb and Aa’ limiting parallel to Bb'. Thus (L) im-
plies that for any point A and any ray Bb, there exists a limiting parallel Aa to
Bb. We define an end to be an equivalence class of limiting parallel rays (34.13).

Definition

For any segment AB, let b be a line per-
pendicular to AB at b; choose one ray
Bb on the line b, and let Aa be the lim-
iting parallel ray to Bb, which exists by
(L). Then we call o = / BAa the angle of O
parallelism of the segment AB, and we :
denote it by 2(AB). (Lobachevsky uses 5 b
the notation I1(AB).)
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Note that the angle of parallelism in well-defined: If we reflect Aa in the line
AB, then clearly it will be limiting parallel to the other ray on b, so that the angle
o is independent of which ray we chose on the line b. Note also that the angle of
parallelism o is necessarily acute, because the two limiting parallels from A to b
do not lie on the same line, by (L).

Proposition 40.1
The angle of parallelism varies inversely with the segment:

(a) AB < A'B' & s(AB) > a(A'B').
(b) AB = A'B’ < a(AB) = a(A'B").

Proof First suppose that AB = A'B’. Then by the (ASL) congruence theorem for
limit triangles (Exercise 34.10) it follows that 2(AB) = «(A'B’).

Next, suppose AB < A'B’. Mark off
C on the ray AB such that AC = A'B’,
draw the perpendicular ¢ to AC at C,
and let Aa’ be the limiting parallel from
A to Cc. Then o' =/ CAa’ is a(AC) =
x(A'B’).

Let Bb be the ray perpendicular to
AB at B on the same side of AC as a'
and ¢. I claim that Bb meets a’. If not,
then the ray Bb would be in the interior
of the angles CAa’' and ACe, meeting
neither the ray a’ nor ¢, and so it would be also limiting parallel to Aa’ and Cc by
(34.12.1). But this contradicts the fact that the angle of parallelism is always
acute, since Bb ||| Cc and the angles at B and C are both right angles.

So Bb meets Aa', and this implies that the limiting parallel from A to Bb
makes an angle o greater than o', i.e., 2(AB) > «(A'B’).

Reversing the roles of AB and A'B’ we find that if AB > A'B’, then
o(AB) < a(A'B’). Combining all three results now gives the desired reverse
implications.

Remark 40.1.1
We will see later (40.7) that for every acute angle «, there exists a segment AB
with a(AB) = o.

Our next goal is to establish some results about limiting parallel rays, limit
triangles, and parallel lines that are not limiting parallel. We have already seen
two congruence results (ASL) = (Exercise 34.10) and (ASAL) = (Exercise 34.9).
We will prove some others, analogous to those for ordinary triangles in Euclid's
Elements, Book 1.
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Proposition 40.2 (Exterior angle A
theorem)
If AB is a segment, with limiting parallel

rays emanating from A and B, then the ot
exterior angle f at B is greater than the lE
interior angle o at A. B k

Proof Because the ray through A making an angle ff with AB is parallel to [
(1.27) we know at least that o < f5.

So suppose « = fi. Let a’ and b’ be
the opposite rays to a and b. The sup-
plementary angles at A and B will also
be equal. Since AB is equal to itself, we
can apply (ASAL) = (Exercise 34.9) to
AB, a,b, and BA,b', a’. We conclude that
a’ is also limiting parallel to b'.

But this contradicts the axiom (L), which says the two limiting parallels from
A to b do not lie on the same line. Therefore, o < ff, as required.

Corollary 40.3
In a hyperbolic plane, the sum of the angles of any triangle is less than two right
angles.

Proof According to (34.6), for any triangle there is a Saccheri quadrilateral
whose top two angles are equal to the angle sum of the triangle. So we have
only to prove that the top two equal angles of any Saccheri quadrilateral are
acute.

Let the Saccheri quadrilateral be
ABCD, with base AB = [. Draw limiting
parallels from C and D to I, with end w
by axiom (L). Then by (40.1) the angles
of parallelism « are equal.

Looking at the limit triangle CDa,
by the exterior angle theorem (40.2),
£ > 7. On the other hand, by (34.1), the top angles « + y and ¢ of the Saccheri
quadrilateral are equal. We conclude that «+ f > «+ y =4, and so  must be
acute.

Remark 40.3.1
Note how different this proof is from the proof of the Saccheri-Legendre
theorem (35.2), which reaches the same conclusion under different hypotheses.




40. Hyperbolic Geometry 377

There we made use of Archimedes’ axiom and a countable limiting process.
Here we do not need (A), but we use instead the powerful axiom (L) on the exis-
tence of limiting parallels. This result says that a hyperbolic plane is semi-
hyperbolic, thus justifying the terminology introduced earlier (Section 34).

Proposition 40.4 (AAL)

Given two limit triangles ABIm and A'B'lI'm’, suppose that the angles at A and B are
equal respectively to the angles at A' and B’'. Then also the sides AB and A'B’ are
equal.

Proof 1If not, let us suppose that AB >
A'B’. Choose a point € on AB such that A
CB = A'B’, and draw a ray n at C, on the
same side of AB as [ and m, making an

angle equal to the angle at A’, which is y

also equal to the angle at A. Now com-

paring C,B,n,m to the limit triangle g
A'BlI'm’, it follows from (ASAL)= g b
(Exercise 34.9) that n is limiting parallel o

to m.

Then by transitivity (34.11) it follows also that [ is limiting parallel to n. But
this contradicts the exterior angle theorem (40.2) because the angle at C, which
is exterior to the limit triangle ACIn, is equal to the angle at A.

We conclude that AB = A’'B’, as required.

Remark 40.4.1
For some results about triangles with two or three “limit angles,
40.2, 40.8.

" see Exercises

Theorem 40.5
In a hyperbolic plane, if | and m are two parallel lines that are not limiting parallels,
then there is a unigue line in the plane that is perpendicular to both of them.

Proof Let 1 and m be two parallel lines that are not limiting parallels. Let AB
and CD be two perpendiculars from points A, C on [ to m. If AB = CD, then
DBCA is a Saccheri quadrilateral, and hence the line joining the midpoints of AC
and BD will be perpendicular to both ! and m, by (34.1).

If AB # CD, we may assume CD > AB, and we proceed as follows. Take E on
CD such that AB = ED. Let n be a ray through E making the same angle with ED
as [ makes with AB. I claim that n will meet [ in a point F. Indeed, let p be a
limiting parallel from B to I. Since by hypothesis I and m are not limiting paral-
lels, this ray does not lie on the line m. Let g be the ray through D making
the same angle with m as p does at B. Then g is parallel to p by (1.28), but not
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a limiting parallel, by the exterior angle theorem (40.2). On the other hand,
applying (ASAL) to ABlp and EDng, we find that ¢ is limiting parallel to n.
Therefore, n is not limiting parallel to p, and hence n must meet [ at some point
F. (In the figure we put F on the far side of A from C, but the proof works
equally well if F is between A and C.)

Now take H on [ such that AH = EF, and take K on m such that BK = DG.
Then comparing the quadrilaterals EFDG and AHBK, two applications of (SAS)
show that FG = HK and HK is perpendicular to m. Thus GKFH is a Saccheri
guadrilateral, and the line joining the midpoints of FH and GK will be perpen-
dicular to both I and m.

D K

It remains to show the uniqueness of the line perpendicular to both [ and m.
Suppose to the contrary that AB and CD were two common perpendiculars to [
and m. Then ABCD would be a rectangle, which is impossible —cf. (40.3) and
(34.7).

Proposition 40.6
Given an angle in the hyperbolic plane, there is a unique line (called the enclosing
line of the angle) that is limiting parallel to both arms of the angle.

'l[o{

Proof Let O be the vertex of the angle,
and choose points A, B on the two arms
of the angle, at equal distance from O. It
will be convenient at this point to intro-
duce a new notation. We denote by o p
the end of the ray OA, that is, the
equivalence class of all rays limiting
parallel to OA. Then we may draw the
line Bx, meaning, let Bx be the ray
through B limiting parallel to OA. We
may also speak of the limit triangle
ABu, consisting of the segment AB plus
the two limiting parallel rays Ax and Bo.
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To continue our proof, let « be the end of OA, and let ff be the end of OB.
Draw Bu and Aff. Let a be the ray bisecting the angle #Af, and let b be the ray
bisecting the angle aBff. Note by symmetry (!) that the bisected angles at A and B
are equal. We distinguish three cases.

Case 1 The lines a and b meet at a point C. By symmetry (!) AC = BC. Draw
the line Cf. Then by (ASL) = (Exercise 34.10) applied to the limit triangle ACf
and BCf, the angles at C of these two triangles are equal. But this is clearly not
80, so this case cannot occur. (See diagram on previous page.)

Case 2 The rays a and b are limiting
parallel with an end y. In this case the
ray By is in the interior of the angle
ABf, so it meets Aff in a point C. By
(AAL) = (40.4) applied to the limit tri-
angles ACy and BCf, the sides AC and
BC are equal. Therefore, by (L.5) the
angles BAC and ABC are equal. But this
is not so, because the angle BAC is also
equal to the angle ABx, which is prop-
erly contained in the angle ABC. So this
case cannot occur either.

Case 3 The only remaining possibility
is that a and b are parallel but not limit-
ing parallels. Then by (40.5) there is a
common perpendicular line I, meeting
a at C and b at D. I claim that [ is the
required enclosing line, i.e., [ has the
ends o and f.

By symmetry it is enough to show
that [ has end f. If not, draw the lines
Cf and Df, which will be distinct from L.
We compare the limit triangles ACf and
BDf. The angles at A and B are equal,
by construction. The sides AC and BD
are equal by symmetry (!), so by (ASL)
the angles at C and D are equal. It fol-
lows that Cff and Df make equal angles
with [ at € and D, which contradicts
the exterior angle theorem (40.2). We
conclude that [ has ends « and f, as
required.
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The uniqueness of the enclosing line is clear, because by (L) we cannot have
two distinct lines that are limiting parallel at both ends.

Corollary 40.7

For any acute angle a, there exists a line that is Iimiting parallel to one arm of the
angle and orthogonal to the other arm of the angle. In particular, there is a segment
whose angle of parallelism is equal to «.

Proof Given the acute angle o, we

double it, and consider the enclosing

line (40.6) of the angle 2o. This will be

orthogonal to the angle bisector of 2o, £ L
which is one arm of the original angle «. %
Thus « becomes the angle of parallelism

of the segment cut off on that arm of the

angle.

Remark 40.7.1
Combining with (40.1), we see that there is a one-to-one correspondence be-
tween the set of congruence equivalence classes of line segments and the set
of congruence equivalence classes of acute angles, given by associating a seg-
ment AB to its angle of parallelism «. In particular, there is a uniquely deter-
mined standard or absolute segment size corresponding to one-half of a right
angle.

Be careful, however, because this correspondence does not send sums of
segments into sums of angles. There is a more complex relationship that we will
see later (Exercise 42.7).

Proposition 40.8

In a hyperbolic plane, Aristotle’s axiom holds, namely, given an angle o and a seg-
ment AB, there exists a point C on one arm of the angle such that the perpendicular
CD from C to the other arm of the angle is greater than AB.

Proof Given the angle « at A, let [be a c £
line limiting parallel to one arm of «
and meeting the other arm at right an-
gles at a point F (40.7). Take E on [ such 2
that EF = AB. Draw a perpendicular to [
at E, and let it meet the other arm of the
angle « at C (cf. Exercise 34.12). Drop a A A I
perpendicular CD from C to AF. D £
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Consider the quadrilateral DFCE. Because of (40.3), the angle at C must be
acute. Therefore, CD > EF = AB (34.2), as required.

Remark 40.8.1
In fact, a stronger result is true, namely, given o and AB as above, one can find
C such that CD = AB. The proof uses hyperbolic trigonometry (Exercise 42.8).

Now, as an illustration of the techniques of this section, we will give the
hyperbolic version of a familiar Euclidean theorem on the angle bisectors of a
triangle. The fact that the (internal) angle bisectors of a triangle meet in a point
is true in neutral geometry, hence both in Euclidean and hyperbolic geometry,
as we have seen before (Exercise 11.6). The following result has to do with the
external angle bisectors of a triangle.

Proposition 40.9
In a hyperbolic plane, let ABC be a triangle, and consider the (internal) angle bisector
at A and the external angle bisectors at B and C.

(a) If two of these angle bisectors meet in a point, so does the third.

(b) If two of these angle bisectors have a common perpendicular line 1, then the third
is also perpendicular to 1.

(c) Iftwo of these angle bisectors are limiting parallels, so is the third, at the same end.

Proof (a) If two of them meet in a
point Y, then Y is equidistant from all
three sides of the triangle; hence it lies
on the third angle bisector. The proof in
this case is the same as the Euclidean
case (1V.4).

(b) Suppose that the angle bisectors
at A and B have a common perpendicu-
lar line [.

We first claim that ! cannot meet
any side of the triangle. If it meets one
side, then by reflecting in the two angle
bisectors, it will meet the other two
sides, and it will meet all three at the
same angle. Two out of three of these
intersections (in the diagram V, W) will
have the angles in corresponding posi-
tions, so that by (1.28) the lines BC and
AC will be parallel. This contradicts Y v

their meeting at the point C. Thus [
cannot meet any side of the triangle.
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Secondly, we note that I cannot be a limiting parallel to any side of the
triangle. If it were, then by reflecting in the angle bisectors, it would be
limiting parallel to the other two sides, and so would have three ends, which is
absurd.

So | neither meets nor is limiting
parallel to any side of the triangle;
hence by (40.5) it has a common per-
pendicular with each side of the trian-
gle. Using the lemma below, the first
and second of these common perpen-
diculars are equal. Similarly, the first
and third are equal, because the angle
bisectors at A and B are orthogonal to L.
Therefore, the second and third are
equal, and using the lemma in the other

direction, we see that the angle bisector
at C is also perpendicular to .

(c) This third case of the proposition follows by elimination. Suppose two
angle bisectors are limiting parallel. If the third is not, then it either meets one
of the others or has a common perpendicular, which puts us in case (a) or (b),
contradicting the first two being limiting parallel.

Lemma 40.10

Consider a five-sided figure ABCDE with rvight angles at A, B, C, D. Then AC = BD
if and only if the angle bisector at E meets the opposite side at a point F at vight
angles.

Proof First suppose that the angle
bisector at E meets AB at a point F,
making a right angle there. Then reflec- o
tion in the line EF sends the line AB |
into itself and interchanges the lines CE

and DE. So the segments AC and BD

are interchanged, because they are the
unique common perpendiculars (40.5) 3
between the lines AB and CE and AB A
and DE. Hence AC = DB.

Conversely, suppose AC = DB. Draw the line CD. Then ABCD is a Saccheri
quadrilateral, and the angles at C and D are equal (34.1). It follows that the base
angles of the triangle CDE are equal. Hence it is an isosceles triangle, and the
angle bisector at E will meet CD at its midpoint at right angles. Now it follows
from (34.1) that this line continued will meet AB at its midpoint F, at right
angles.

C

B

’1}3_-'""
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Remark 40.10.1
To make a more unified statement of (40.9) we will define an ideal point P* to be
an equivalence class of lines, all of which have a common perpendicular line p.
We will say that P* lies on a line I, if [ | p. We define a generalized point to be
either a usual point, or an end, or an ideal point. Using this language, we can
say that the three angle bisectors of (40.9) meet in a common generalized point.

Exercises

The following exercises all take place in a hyperbolic plane, that is, a Hilbert plane
satistying (L).

40.1

40.2

40.3

If two lines I, m have a transversal
n that makes equal alternate interior
angles, then I, m are parallel but not
limiting parallel. Furthermore, in that
case there is a unique point P such
that every transversal that makes
equal alternate interior angles to [ and
m passes through P.

(ALL) Suppose we are given equal an-
gles at two points A and A', and let |
and [" be their enclosing lines. Show
that the perpendicular AB from A to |
is equal to the perpendicular A'B'
from A" to I".

If I and m are two parallel, but not
limiting parallel, lines, show that their
common perpendicular AB is the
shortest distance between the two
lines. Namely, show for any other
points C € l and D € m that CD > AB.

>
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40.4

40.5

40.6

40.7

40.8

Show that ends of lines behave somewhat like points, as follows.
(a) Given a point P and an end «, there exists a unique line ! passing through P and
having end «.

(b) Given two distinct ends o, ff, there exists a unique line [ having ends « and fi.

Given two lines ! and m, limiting par-

allel at one end, show that there exists

a line n, limiting parallel to (the other i
end of’) 1, and orthogonal to m.

h
Given two lines I, m, limiting parallel
at one end, show that there exists a '8
third line n, limiting parallel to the h
other ends of both I and m. "

Given two lines I, m, limiting parallel
at one end, and given a segment AB,
no matter how large or how small,
there exists a point C on [ such that
the perpendicular CD to m is equal to
AB. Hint: Take m’' perpendicular to
AB through B and let I’ be the limiting

parallel to m’ through A. Apply Exer-
cise 40.5 to both the pair [, m and the
pair I, m', and compare.

(LLL). Let I,m,n be three lines, each
limiting parallel to the other two at
opposite ends.

(a) Show that the three midlines ( Ex- (]
ercise 34.11) to the three pairs of lim-
iting parallel rays are orthogonal to
the opposite sides of the trilimit tri-
angle I,m,n, and all meet in a single
point A, which is equidistant from
I, m,n.
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(b) If I',m',n' is another such trilimit triangle, with corresponding point A, show
that the distance from A to the three sides [, m, n is equal to the distance from A’ to
the three sides I',m’, n’ of the second triangle.

(¢) Given any point P on one side of the trilimit triangle, show that the perpendic-
ulars PQ ., PR from P to the other two sides make a right angle at P.

40.9 Given two angles o, ff, with « + f§ < 2RA, show that there exists a limit triangle with
angles o, fi.

40.10 A limit guadrilateral is a figure consist-
ing of four lines [, m,n, p, with each A 3
limit parallel at opposite ends to the ? #n
next, in cyclic order. C € o

(a) If Imnp is a limit quadrilateral,
show that opposite sides are parallel B "
but not limit parallel.

(b) Show that the common orthogonals AB of [ and n and CD of m and p meet at
right angles at a point E.

(¢) Show that there exists a limit quadrilateral with AB equal to any prescribed
segment.

(d) Two such limit quadrilaterals can be moved one to the other by a rigid motion
of the plane if and only if the segment AB of the first is equal to one of the seg-
ments A'B’ or C'D’ of the second.

40.11 Show that ideal points (40.10.1) behave somewhat like regular points, as follows.
(a) Given a (regular) point P and an ideal point Q*, there is a unique line contain-
ing them both.

(b) Given an end « and an ideal point Q*, and assuming that « is not an end of the
defining line g of Q*, then there is a unique line containing Q* with end o.
(¢) Any two distinct lines have a unique generalized point in common.

40.12 You may have noticed while doing Exercise 40.11 that two ideal points do not nec-

essarily lie on a line. So we define a generalized line to be either.

(1) a regular line, together with its two ends and ideal points, or

(2) a timit line, which consists of an end o, together with all ideal points P* whose
defining line p contains #, or

(3) an ideal line, which consists of all ideal points P* whose defining line p contains
a fixed (regular) point L.

Show that the set of all generalized points of the hyperbolic plane, together with
the subsets of generalized lines, forms a projective plane (Exercise 6.3). In particu-
lar, any two generalized points lie on a unique generalized line, and any two gen-
eralized lines meet in a unique generalized point.
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40.13

40.14

40.15

40.16

Let ABC be any triangle. Show that Z A A"
the external angle bisectors at A, B, C
form a “generalized triangle,” ie., a
set of three lines meeting in general-
ized points X, Y, Z Show that the in-
ternal angle bisectors of ABC, which w

meet at a point W, are the altitudes of c
the new triangle XYZ. '

X

Reverse the argument of Exercise 40.13 to prove that in any triangle ABC, the three
altitudes will meet in a generalized point.

Hint: Let BD and CE be two altitudes. C

Reflect the line DE in AB and in AC to
get two new lines, which meet at a
generalized point F. Show that B is
equidistant from the three sides of the
(generalized) triangle DEF, and from -
this conclude that F is a real point (not
an end or an ideal point). Now apply

Exercise 40.13 to the triangle DEF. X A

Conclude that BD, AF, CE meet in a

generalized point G, and that F lies on g ¢
BC, and AF is orthogonal to BC, so in \/ *
fact, AF is the third altitude of the F

original triangle.

Note that if we assume that two altitudes of the triangle meet in a (regular) point,
then the entire proof can be carried out in a Hilbert plane with no further hypoth-
esis, i.e., in neutral geometry.

Extend the theorem on (internal) angle bisectors of a triangle as follows. Consider a
generalized triangle, consisting of three nonconcurrent lines (meaning they have
no generalized point in common). Let the vertices be generalized points A, B, C.
(a) Define the analogue of an angle bisector for two lines meeting at an end or an
ideal point.

(b) Show that the three (internal) angle bisectors of the generalized triangle ABC
always meet at a (regular) point W.

(¢) Show that W is the center of an inscribed circle that is tangent to the three sides
of the triangle.

Prove the results of Exercises 35.8, 35.9 in a hyperbolic plane, without using Archi-
medes’ axiom.
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41 Hilbert’s Arithmetic of Ends

We come now to one of the most beautiful parts of the theory of non-Euclidean
geometry, which is another illustration of the usefulness of abstract algebra.
This is Hilbert's tour de torce, the creation of an abstract field out of the geome-
try of a hyperbolic plane. In the same way that the field of segment arithmetic
(Section 19) helped us to understand Euclidean geometry, this field will help us
in our study of non-Euclidean geometry. Using it we can prove results such as
Bolyai's parallel construction, or the theorem on the three altitudes of a triangle.
We also set up a hyperbolic analytic geometry and hyperbolic trigonometry,
whereby any geometric problem can (in principle) be translated into an alge-
braic problem in the field. This is analogous to ordinary analytic geometry, but
the particulars are all different, having “suffered a sea change into something
rich and strange.” Finally we will be able to show that the hyperbolic plane is
uniquely characterized by its associated field, and is in fact isomorphic to the
Poincare model over that field.

We start with a hyperbolic plane, as in the previous section, which is a
Hilbert plane satisfying the axiom of limiting parallels (L).

Proposition 41.1
Let A, B, C be three noncollinear points in a hyperbolic plane and consider the three
perpendicular bisectors I, m, n of the sides of the triangle ABC.

(a) If two of the lines I, m, n meet at a point P, then the third line also passes through
P, and in this case A, B, C all lie on a circle with center P.

(b) If two of the lines I, m, n have a common perpendicular p, then the third is
also perpendicular to p, and the three points A, B, C are equidistant from the
line p.

(c) If two of the lines I, m, n are limiting parallel, the third is also, and all three have
a common end.

Proof (a) This is essentially what Euclid
proves in (IV.5), the only difference be- A
ing that we must assume that two of the
lines meet.

(b) Suppose that two of the lines, say D
[ and m, have a common orthogonal 8
line p. Dropping perpendiculars AG and
BH to p, one application of (SAS) and 1 m
one application of (AAS) show that
AG = BH (see second diagram). In other
words, A and B are equidistant from p.

b
@
-
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The same reasoning applied to m ® E A
shows that B and C are equidistant Mt
from p. Therefore, A and C are also n
equidistant from p, and then it follows
from (34.1) that n is orthogonal to p, as 3 i P
required. H ¢

(c) Now suppose that [ and m are limiting parallels. If the third line n meets
I at a point, we apply (a) above to find that I and m also meet, which contra-
dicts our hypothesis. If n and ! have a common perpendicular, then by (b) so
do ! and m, which again contradicts our hypothesis. It follows from (40.5) that
the only remaining possibility is that n and [ are limiting parallels. (We leave
to the reader to figure out why all three lines are limiting parallel at the same

end.)

Proposition 41.2 (Theorem of three reflections)

Given three lines a, b, ¢ in the hyperbolic plane, with a conumon end o, there exists a
fourth line d with end @ such that reflection in d is equal to the product of the
reflections in a, b, c:

TeoOp0y = O4.

Here a; for any line | denotes reflection in the line 1.

Proof Take any point A on the line a.
Let B be its reflection in the line b. Let C
be the reflection of B in ¢. Draw AC, and
let d be the perpendicular bisector of
AC. Then d will be the required fourth
line.

To show this, it is equivalent to
show that the product

W = 040.010, C

is equal to the identity. Note first that ¢(A) = A by construction of d. Note also
that b and ¢ are two perpendicular bisectors of sides of the triangle ABC and
they are limiting parallels with end . 1t follows from (41.1) that d also has end
w. Therefore, ¢ preserves the end @, and because of this ¢ fixes every point of
the line a. Therefore, ¢ is either the identity or reflection in the line a (cf. (17.4)
and Exercise 17.3).

Suppose that ¢ = g,. Then 640,06} is equal to the identity. Then for any point
P e b we would have g46.(P) = P, s0 6,(P) = 64(P), and this implies ¢ = d, which
is absurd. We conclude that ¢ = identity, as required.
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Remark 41.2.1

This result shows for a pencil of lines with a common end what we have already
seen for a pencil of lines through a point, or a pencil of lines with a common
orthogonal line (Exercise 17.14).

Now we are ready to define the arithmetic of ends. Fix a hyperbolic plane 11.
Recall that an end is an equivalence class of limiting parallel rays (34.13). Fix
one line and label its ends 0 and 20. We let F be the set of all ends in the plane I1
different from oo, and then we set F/ = F U {0}, so that F’ is the set of all ends
of the plane. We will make the set F into an ordered field by defining arithmetic
operations +, -, and an ordering on it.

Note that given any end « and any point P, there exists a unique line m
passing through P and with end «. Just take I a line having end o, and use the
axiom (L) to find a line m through P limiting parallel to [. Similarly, given two
ends a, ff, there exists a unique line [ having ends o and f. Just take any point P,
consider the angle formed by the rays Px and Pf, and let I be the enclosing line
of the angle «Pf (40.6). We will denote the line with ends «,f by (=, ).

Definition

Given two ends o, ff not equal to oo, we
define their sum o + f as follows. Take
any point C on the line (0, o). Let A be
its reflection in the line (=, o). Let B be
its reflection in the line (f, o). Then
o + f is the end of the perpendicular bi-
sector of AB other than oc.

}m

Proposition 41.3
The addition of ends is well-defined, and makes the set (F,+) into an abelian group
with additive identity 0.

Proof First note that by (41.1) the perpendicular bisector of AB has one end o,
so the definition makes sense. Second, note by (41.2) that the sum « + f§ is char-
acterized by the property

Oyt = OROTy,

where for any end o, o, denotes reflection in the line (z, «o). Thus « + f is inde-
pendent of the choice of C, and so is well-defined.

From the definition, it is clear that a«+ = f+a It is also clear that
0 + o = o for any o. If we denote by —a the reflection of & in the line (0, «0), then
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o+ (—a) = 0, so we have additive inverses. For the associative law, just note that
O’[,_;ﬁ)_,_;. = O':-O'(]O'ﬁﬁrf = G;-G(]Gﬁﬂgaz,
which is independent of the order of the operations.

Definition
In order to define multiplication of ends, | A la'
we first fix a line perpendicular to the
line (0, oc), and label one of its ends 1. -dlq
Note that the other end is then —1.
Given ends o,f, draw the lines (x, —)
and (f, —f), which will meet the line
(0, 20) at right angles at points A, B. Let b N A o
O be the point where the line (1,-1) 0 A zi cl

meets (0,c0). Find C on the line (0, «)
such that OC = OA + OB, treating these

as signed distances: If A is on the ray o
Ooo, then OA is positive; if A is on the _d -t - F
ray 00, then OA is negative. -1

Take the line through C, perpendicular to (0, «), and its ends will be off and
—aff. Adjust the sign as follows: Ends on the same side of (0,00) as 1 will be
called positive, and ends on the same side of (0, ®) as —1 will be negative. We
choose the sign so that pos x pos = pos, pos x neg = neg, and neg x neg = pos,
as usual.

Theorem 41.4
In a hyperbolic plane 11, fix two perpendicular lines and label their ends 0, 00,1, —1
as above. Let F be the set of all ends of 11 different from oo, Then F, with the two

operations +, - and the notion of positive elements defined above, is a Euclidean
ordered field.

Proof We have already seen (41.3) that (F, +) is an abelian group with identity
0.

From the definition of multiplication we see immediately that (F\{0},-) is
an abelian group with identity 1. Indeed, multiplication of ends corresponds to
addition of signed segments on the line (0, o), which is an abelian group. Re-
flection in the line (1, —1) sends o to o'

Multiplication by zero was not defined, so we define 0-a =0 forall x € F.

For the distributive law, we proceed as tfollows. Given an end y, which we
may assume to be positive, let the line (y, —y) meet (0, o) at C. We define a rigid
motion t of the plane, called translation along the line (0, %) by OC, as follows.

For any point P, let PQ be the orthogonal to (0, 0c). Choose Q' on (0, ®0) such
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that OC = Q@' as signed intervals. Take P’ on the line through @', orthogonal to
(0, o), on the same side as P, such that PQ = P'Q".

One can verify easily that 7 is a rigid motion of the plane (Exercise 41.1).
It leaves the ends 0 and o« fixed, and sends any other end o to yx. Applying
this rigid motion to the diagram used to define « + ff, the diagram is sent to
another diagram with the same properties, and from this it is clear that
Yo+ f) = yo+ yp.

-l

We have defined the positive ends to be those on the same side of the line
(0, ) as 1. From our definitions it is clear that sums and products of positive
ends are positive. It is also clear by definition that for any « € F, either o is posi-
tive, or & = 0, or —a is positive. Hence F is an ordered field.

To show that F is Euclidean, let z be a positive end, let the line («, —2) meet
(0, =) at A, and let B be the midpoint of OA. Then the line perpendicular to (0, o)
at B will have an end f§ with the property f* = «. Thus o has a square root in F.

To relate this newly constructed field of ends with the geometry of the
plane, our first step will be to describe some useful rigid motions and their effect
on the ends. Also, to simplify notation, we will now write elements of the field F
with Latin letters, even though as ends, they were originally written with Greek
letters.

Proposition 41.5
Let 11 be a hyperbolic plane and F its field of ends, as above. We describe various
rigid motions and their effect on ends.

(a) The reflection in (0, oc) sends x € F' to —x. So we write x' = —x.
) The reflection in (1, —1) gives x' = 1/x.
(c) Translation along (0, o) is represented by x' = ax for any ae F, a > 0.

) For any a € F, there is a rigid motion 61,6, the composition of reflection in the
line (0,00) and reflection in the line (La, o), which we call “rotation around
oo, which gives x' = x + a.
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e) The rotation around the point O, which sends 0 to a for any a € F, gives
(e) p , y , gl

, x+a
X =—
—ax + 1
) . _ s 1
on ends. The rotation around O sending 0 to o« gives x' = — —.
X

Proof (a) We saw this in the definition of addition.

(b) We saw this in the definition of multiplication.

(c) We saw this in the proof of the distributive law in (41.4).

(d) From the definition of addition, we see that g, sends 0 to 2a, and ¢}, sends
0 to 2b. Then g, sends 2a to 2b. Changing variables, let c=a+ b and d = 2a.
Then o, sends d to 2c — d. Using these relations, we see that g1 ,04 sends any x to
x + a, as required. _

(e) We give an indirect proof that rotation around O has the given effect on
ends. If @ = 0 we have the identity. If « = oo, we have the composition of reflec-
tion in (0, «0) and reflection in (1, —1), which is a rotation of 2RA. So we may
assume a # 0, oo.

Note that

x+a 1 4

= —a
—ax + 1 a 1
- X+
a+al a+al

which is a composition of operations of the types given in (a), (b), (c), (d) above.
So there is a rigid motion having the effect

,  X+ta
—ax + 1

on ends. Next we will show that any rigid motion having that effect on ends
must be the rotation around O taking 0 to a. Indeed, substituting 0 and oo in this
expression, we find that 0 goes to a and o goes to —a~!, so the line (0, w) goes
to (a,—a'), which passes through O.

Next, we compute and find that the line (1,-1) goes to the line
(Q+a)/(—a+1),(-1+a)/(a+1)), which also passes through O. Indeed, a line
(¢,d) passes through O if and only if d = —¢~!, as we see by applying reflections
in (0,00) and (1,—1). Hence the point O, which is the intersection of the two
lines (0,00) and (1,—1), goes to the intersection of the images of those lines,
which is O.

Finally, if we try to solve the equation x = (x+a)/(—ax + 1), we obtain
x? = —1, which has no solution because F is an ordered field. Thus no end is
fixed under this transformation. Now, a rigid motion that fixes a point O and has
no fixed ends must be a rotation around O (Exercise 17.4), so we are done.
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Proposition 41.6
Let 11 be a hyperbolic plane with field of ends F, as above.

(a) A line is represented by an unorvdered pair (uy,uz) of distinct elements of
F'=FU{mw}.

(b) A point is given by the equation of all lines containing it, which is of the form

wuy — bluy + up) +a? =0
witha,beF, a > 0, and |b| < a.

Proof (a) Indeed, a line is uniquely determined by its two ends, which are dis-
tinct elements of F', and any two ends lie on a line.

(b) First consider the point O. A line (u;,u;) contains O if and only if
u1U; = —1. Indeed, such a line is stable under the rotation around O hy 2RA,
which sends ¥’ = —1/x by (41.5).

Now we can move O to any other point by first making a translation along
(0, o) and then a rotation around . A translation along (0, o0) gives x’ = cx, so
we get a new equation uyu; = —c?. Then a rotation around oo gives ¥’ = x — b, so
we get a new equation

(w1 — b)(uz — b) + ¢? =0,
or
wuz — b(uy +uz) + b2 +c?=0.
Here b is any element of F, and we can set b* + ¢ = a? with a positive, a > |b|.
Remark 41.6.1
We can think of the point with equation b
Uty — by +uy) +a® =0 o

as having coordinates (a,b). It is the
intersection of the lines (a,—a) and N/ P

(b,c). However, we have found that g o3
calculations seem to work out better if T \

we continue to think of a line as given
by coordinates (u;,uz), and a point as

given by an equation. This is the oppo-
site of the analytic geometry we are \
used to, where a point has coordinates S -&

and a line has an equation. -

Proposition 41.7
For any segment AB in the hyperbolic plane, lay off a congruent segment OC on the
ray O, and let the line perpendicular to (0, o0) at C be (a,—a) with a > 0. We de-
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fine u(AB) = a. Then u is a multiplicative distance function on the plane (Section
39) with values in the multiplicative group of positive elements of the field F, namely:

(a) u(AB) >

(b) AB = A’B zf and only if u(AB) = u(A'B").
(c) AB < A'B' if and only if u(AB) < ,u{A”B ).
(d) u(AB+ CD) = u(AB) - u(CD).

Proof These properties are all immediate from the definition of multiplication
in F.

Proposition 41.8 |
For any angle 0 in the hyperbolic plane, O
lay out an equal angle centeved at O, and
reaching from 0 to a on the positive side B
of (0,). Then we define tanf/2 = a. 0 /] 00
This tangent function has the following 0 ’
properties.
a) tan@/2 e F, and tan /2 > 0.
tan §/2 = tany /2 if and only if § = . -1

)

3) If 6 < then tan8/2 < tan /2.
) If = RA, tanf/2 = 1.
)

7]
((}""f’): tani-%tanz

2

tan
@

1—tan— tang
2 2

Proof (a), (b), (c), (d) are immediate by construction. For (e), let tan#/2 = a,
tanyy/2 = b, and tan(f + )/2 = ¢. Then the rotation around O from 0 to ¢ is the
composition of the rotations from 0 to a and 0 to b. Using the formula of (41.5),

we have
x+a
—— | +b
X+c (—ax-}-l)
—cx+ 1 —b( x+a ) .
—ax +1
A brief calculation gives
. a+b
1-ab’

which is the desired result.




396 7. Non-Euclidean Geometry

Remark 41.8.1

We cannot define the tangent of an angle as in Euclidean geometry by using
right triangles, because in non-Euclidean geometry, right triangles of different
sizes are not similar to each other. Therefore, we use this ad hoc definition.
However, the terminology tan#/2 for this function is justified by the properties
it enjoys. In the presence of Archimedes’ axiom, one can define the radian
measure of an angle by a limiting process using dyadic rational multiples of a
right angle. Then, viewing the field F as a subfield of IR (15.5) it is easy to prove
that this tangent function is the same as the usual one as a function from R to R
(Exercise 41.16).

Proposition 41.9 (Bolyai's formula)

If = is the angle of parallelism of a segment
AB, then using the distance function and
the tangent function defined above, we * ! !
have

o -
tan o = u(AB) .

Proof Lay out the angle « as 00a. Then 0 c > 2
the line (a, —a) will meet the ray 00 at o
right angles at a point C, and o will be
the angle of parallelism of the segment
OC equal to AB. To find u(OC), reflect

in the line (1,—1) to get OD and the e
line (a ', —a'). Then u(AB) =a ' and -q/ -1 -0
tano/2 = a, which gives the desired

result.

Remark 41.9.1
We recover the same result as (39.13) under different hypotheses and different
definitions of tan and u.

Now we have enough basic results to be able to apply this “hyperbolic ana-
Iytic geometry” to problems in the hyperbolic plane. By way of illustration of
these techniques, we will give Bolyai's parallel construction, and prove the
theorem about the altitudes of a triangle.

Proposition 41.10 (Bolyai's parallel construction)

Suppose we are given a line | and a point P not on | in the hyperbolic plane. Let PQ be
the perpendicular to 1. Let m be a line through P, perpendicular to PQ. Choose any
point R on I, and let RS be the perpendicular to m. Then the civcle of radius QR
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around P will meet the segment RS at a point T, and the ray n = PT will be the lim-
iting parallel ray to | through P.

P 3

| 4

Iy

R 2

Proof To prove this, we use the field
of ends introduced above. By a rigid
motion of the plane, we may assume
that P is the center of our coordinate
system, and PQ is the line (0, oc) and PS v e b
is the line (1, —1). We will take n to be sl T

the limiting{: paral)lel to I, and let it meet \

RS at T. Then we must prove that 0
QR = PT. To show this, we will apply 7 a
rigid motions to move each of these

segments to the line (0,20), with one

end at P. Then we will verify that the -
other ends of the segments land in the |
same place. For this we need a lemma.

Lemma 41.11
Two lines (uy,uz) and (v1,v2) in the hyperbolic plane meet the line (0, ) at the
same point if and only if uyuz = vV, and Ui, 18 negative.

Proof Indeed, we have seen in the proof of (41.6) that a point on the line (0, o)
has an equation of the form wju; = —¢? for some ¢ € F. So the two lines (u;,uz)
and (vq,v;) pass through the same point of (0,cc) if and only if wuy =
—c? = vyvy. Since every positive element of F is a square (41.4), such a ¢ will
exist if and only if uu; = vyv; and u u; is negative.

Proof of (41.10), continued Let us start with the segment PT. We let the ends of
the line I = QR be a and —a. The line RS we let have ends b and »'. Then n is
the line (a, —a~'). We use the rotation around P that sends a to 0. Its effect on
ends, by (41.5), is

, x—a

X = .
ax + 1

Hence it sends the line (b, b!) to the line




398 7. Non-Euclidean Geometry

—a bl-a
(11, uz) = (b b—)

ab+1"ab-1+1

The image of T will be the point where this line meets the line (0, oo). In order
to apply the lemma, we compute

b—a b~ ! —a (b —a)(1 — ab)
U Uy = = .
1 ab+1) \ab™! +1 (14 ab)(a+ b)
Now consider the segment QR. First we make a translation along (0, ) to
send Q to P. Its effect on ends will be x' = a~'x, so it will send the line (b,b™') to

the line (a'b,a 'b™!), and the line (a,a™!) will become (1,-1). Next we do a
rotation around P sending 1 to 0, whose effect on ends is

r_x—1
Tx+ 1

X

So this line just mentioned will go to

a'b—1 a'b™! -1
(D‘l,vz) = .

alb4+1"a b1 +1
The image of R under the two rigid motions will be the intersection of (vi,v2)
with (0, 0). So we compute

- (a—lb— 1) (a—lb—l - 1) _ (b—a)(1 —ab)

a'b+1/ \a b +1 (b+a)(1+ab)

Observing that wju; = v, and wuz < 0, since b > a > 1 in our situation, and
using the lemma, we conclude that QR = PT, as required.

Remarks 41.11.1

This remarkable result gives a ruler and compass construction for the limiting
parallel line. In other words, by making constructions such as dropping a per-
pendicular from a point to a line, or intersecting a line with a circle —con-
structions that are possible in any Hilbert plane with axiom (E)—one obtains the
limiting parallel ray from a point P to a line . However, the curious feature of
our proof is that we prove that this construction works only by first assuming
(via axiom (L)) that the object we wish to construct already exists. And in fact,
without assuming the existence of the limiting parallel line ahead of time, this
result may fail. For example, in the non-Archimedean geometries of (18.4.3) or
Exercise 39.24, the construction gives a line n that is not limiting parallel to L
These examples suggest that this construction may work in a Hilbert plane sat-
isfying (A) and (E). Indeed, it follows from the classification of Hilbert planes
due to Pejas that any non-Euclidean Hilbert plane satisfying (A) and (E) is
hyperbolic (43.8), and so Bolyai's construction works. Greenberg (1993, p. 222)
says that if you could find a direct geometric proof of this result, yvou would
probably receive an instant Ph.D.
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Proposition 41.12

If (u1,uz) and (vy,v,2) are any two lines

that meet in the plane, and if 0 is the angle U,

between the rays wy, and vy, and u; < vy,

then B

tanf/2 = /—(v1, V21 1y, Uz),

where the expression under the radical is

the cross-ratio defined as

v — U Uz — Uz Uy
1 1 V2 2 v,

(vi,v25u1,u2) = :
M — Uy Uy — U

Proof First consider the case (u,u3) = (0,¢) and (vy,v2) = (a,—a'). In this
case we know that tan /2 = a by definition of the tangent function. We com-
pute the cross-ratio

a—0 —al'—w 5
= —a’.

(a,—a ';0,00) = . —
a—o —at—0
So the formula holds in this case.

In the general case, we consider a rigid motion that takes (u;,u;) to (0, 0)
and (vy,v2) to (a,—a ') for suitable a € F. Since a rigid motion preserves angles,
we need to show only that a rigid motion preserves cross-ratios of ends. In fact,
we can accomplish the rigid motion we need using a composition of rigid
motions of types (a)-(e) of (41.5), and type (e) is itself a composition of the four
earlier types, so we need only verity that the cross-ratio of four ends is stable
under the transformations of types (a) x' = —x; (b) ' = x7'; (¢) ¥’ = ax for a e F,
a > 0; and (d) ¥’ = x + a. These verifications are immediate from the definition
of cross-ratio, so we are done.

Proposition 41.13 (Altitudes)

If two of the altitudes of a triangle meet in a point, so does the third. If two of the al-
titudes are limiting parallels, then all three have a conumon end. If two of the altitudes
have a common perpendicular, then all three have the same common perpendicular,

Proof By a rigid motion of the plane, hi 4 !
we may assume that our triangle ABC is *

so placed that AB is the line (1, 1), and B

C lies on the line (0, o), so that OC is a
one of the three altitudes. Our method 0 © C

is to let (i, uz) be one of the other alti-
tudes, find the intersection of this line b

with (0, ), and then show that the A L
third altitude passes through this same 2 /
point. -

%
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Let AC be (ay,a;) and let BC be (b, b;). Since these two lines meet at C on
the line (0, «0), we must have aja; = byb; < 0 by (41.11).
First we will find the equation of the point B. By (41.6) it is of the form

uuy — d(uy + ) + €* = 0.

Since B lies on the lines (1, —1) and (b, b;) we obtain
~1-d-0+¢*=0,

biby — d(by + by) + e = 0.

Solving for d and e¢?, we find that ¢ =1, and d = (1 + b)) /(b + b,), so the
equation of B is

1+ byb,
by + b

Now, the altitude (u1,uz) through B satisfies this equation. It is also orthog-
onal to (a1, az), so by (41.12) the cross-ratio

Uy — (ty +uz) +1=0. (1)

(uy, uz;ay,az) = —1.
This gives
2uguy — (ay + az)(wy + uz) + 2aya; = 0. (2)
We solve the equation (2) for u; +up and substitute in the equation (1). We
obtain
2(1 + byby) (uyuz + ayaz)
(a) + az)(by + bs)

Uy — +1=0. (3)

Since aya; = bb; as noted above, this equation is stable under interchanging
a's and b's. So if (vy,v;) is the third altitude of the triangle, then vyv; satisfies the
same equation (3), and so ujuy = vyvs.

Now, if the altitude (u;,uz) meets the line (0, o), then by (41.11), wyu; < 0,
and (vi,v2) meets (0,00) in the same point. If (v, u;) is limiting parallel to
(0, o), then one of u; or uy is equal to 0 or oo, in which case wu; = 0 or 0. The
same is true of (vy,v;3), so one of vy,v; is equal to 0 or oo, respectively, so all
three have a common end.

We leave as an exercise (Exercise 41.2) to show that if uyu; = vv; > 0, then
all three altitudes have a common perpendicular.

Exercises

These exercises all take place in a hyperbolic plane.

41.1 Verity that translation along a line, defined in the proot of Theorem 41.4, is a rigid
motion.
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41.2 In the proof of Proposition 41.13, show that if two of the altitudes have a common
perpendicular, then all three altitudes have a common perpendicular.

41.3 Consider the pencil (set) of all lines (u;,uz) having a fixed common orthogonal
line. Show that the lines of such a pencil satisty an equation of the form

iy — by +uz) +a=10
with a < |b|, or an equation of the form
U +u; =c¢

for some ¢ € F.

41.4 Find the two ends (as elements of F) of the angle bisector of the angle 10%.

41.5 Find the multiplicative distance u between the points O = (1,0) and A = (1,a),
using the point coordinates of (41.6.1).

41.6 In the trilimit triangle of Exercise 40.8, find the multiplicative distance g from the
center point A to one of the sides.

41.7 In the limit quadrilateral of Exercise 40.10, express p(CD) in terms of u(AB).

41.8 Prove that an angle of LRA exists in the hyperbolic plane.

41.9 Prove that an angle of LRA exists in the hyperbolic plane.

41.10 In this exercise we describe the group G of all rigid motions of the hyperbolic

plane, as follows.

(a) Show that every rigid motion of the plane can be expressed as a composition of
motions of the four types (a), (b), (c), (d) of Proposition 41.5. In other words, ele-
ments of those four types generate the group G.
(b) Show that an element of G is uniquely determined by its effect on the set F/ of
ends.
(c) If p e G is any rigid motion, then ¢ acts on F' as a fractional linear transforma-
tion of the form

, ax—+b

x =
cx+d

for suitable a, b, c,d e F', with ad — be # 0.

(d) Every fractional linear transformation of F' arises as the action of some ele-
ment g € G on the set of ends. Thus G is isomorphic to the group of fractional linear
transformations of F'.

Because of this result, we can say that the group of rigid motions of the hyper-
bolic plane is composed of four components: a copy of the additive group of the
field corresponding to (41.5d); a copy of the multiplicative group of positive ele-
ments of the field (41.5¢); a copy of the circle group of the field (41.5¢), cf. Exercise
41.11 below; and possibly a reflection.

This is in contrast to the Euclidean situation, where the group of rigid motions
is made up of two copies of the additive group of the field, corresponding to




402 7. Non-Euclidean Geometry

the translations, and one copy of the circle group for rotations, plus a possible
reflection.

41.11 To each rotation p around the point O, let us associate that element a € F' to which
p sends 0. Show that this correspondence gives an isomorphism of the group of
rotations around O with the circle group of the field F, as defined in Exercise 17.6.
In particular, we find the curious result that the group of rotations around a point
in the hyperbolic plane is isomorphic to the group of rotations around a point in
the Cartesian plane over the field F.

41.12 Let I,m be two lines with a common end o. Generalizing (41.5d), we call the com-
position ma,, of the reflections in [ and m, a “rotation around the end &«.” Fix an end
o and a point A. Then the set of all points p(A), where p ranges over all the rota-
tions around the end «, will be called a horocycle. We think of it as analogous to a
circle, but one whose center is an end instead of a point.

(a) Show that a horocycle could also be defined as the set of all points a{A), where
g ranges over all the retlections in lines with end .

(b) If m is the line through A, orthogonal to the line 1= A#, then m meets the
horocycle only at A. We call m the tangent line to the horocycle at A. Show that any
other line through A different from [ or m will meet the horocycle in one other
point B # A.

(c) In the case of the Poincaré model, show that the horocycles defined here are
the same as those defined in Exercise 39.14.

41.13 Let (u,uz) and (vy,v;) be two parallel, not limiting parallel, lines. Show that the
multiplicative distance between the two lines along their common perpendicular is

a—1

B=

1—a
where a is the square root of the cross-ratio
a =/ (U, uz;vp, v2).

41.14 If F is a subfield of the field of real numbers IR, we can define a function
AMAB) =In{u(AB)) where u is the multiplicative distance function of Proposition
41.7 and In is the natural logarithm.

a) Show that 4 is an additive distance function (Section 39) with values in the group
IR, +), namely,

(
{
(1) for any interval AB, we have A(AB) = 0;

(2) AB = A'B" if and only it A(AB) = A(A'B');

(3) A{(AB+ CD) = A[AB) + A(CD).

Note, however, that the values of the function 4 may not belong to F.
(b) Show that Bolyai's formula (Proposition 41.9) then becomes

tano/2 = g~ HAB)

where « is the angle of parallelism of the segment AB.
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41.15 Suppose again that F is a subfield of R. Show that if 4 is any additive distance
function with values in (IR, +), in the sense of Exercise 41.14, then there is a real
constant k > 0 such that for all AB,

A(AB) = kiIn(p(AB)).
41.16 Assume that F'is a subfield of R. Replacing angles by their radian measure (41.8.1),
show that any function having the properties (a)-(e) of Proposition 41.8 is the same
as the usual tangent function.

42 Hyperbolic Trigonometry

The usual trigonometry that we learn in high school could be described as a
collection of relationships between the sides and angles of a triangle, together
with rules of operation (the trigonometric identities) that allow us to compute all
the parts of a triangle from a few given parts.

To be more precise, if ABC is a right
triangle, with angles «, f at A and B,
and sides a,b,¢ opposite the vertices
A, B, C, then we have the relations

. o
sino = —,
¢ B
b
COSH = —, C’
c’ [ o
i o
dn s = —,
b’ A3 ¢

and trigonometric identities such as
sin? o 4 cos?a = 1
and
sin(RA — o) = cosa,

and many others.

Using these relations, if we are given any two sides of a right triangle, or
one side and one angle, then we can compute the remaining sides and angles
of the triangle. Substituting the formulas for sina and cosa in the relation
sin® o + cos”? o = 1 we recover the Pythagorean theorem a” + b* = ¢* (20.6).

The hyperbolic trigonometry that we develop in this section accomplishes
the same thing in the hyperbolic plane. We develop a series of relationships be-
tween the sides and the angles of a right triangle, together with rules of opera-
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tion on the trigonometric functions, so that if any two of the quantities a, b, ¢, o, ff
are given, we can compute the others from those two. This is a slightly stronger
result than in the Euclidean case, because in hyperbolic geometry there are no
similar triangles, so even giving the two angles o, f uniquely determines the
triangle. The situation is also somewhat complicated by the fact that in hyper-
bolic geometry we have only o + ff < RA, whereas in Euclidean geometry, f is
uniquely determined by o, since « + ff = RA.

Since we use the multiplicative distance function and the tangent function
defined in the previous section, which take values in the field of ends F instead
of the real numbers, our formulae look different from the formulae in most
books on non-Euclidean geometry. The advantage of this method is that every-
thing takes place in a field naturally associated with our geometry, and works
also in the non-Archimedean case. See Exercise 42.15 for a translation into the

usual terminology for the case F < R. A

To derive the formulas of hyperbolic P
trigonometry, we put a right triangle in i 7 \
special position as shown, with A at the " N\
center of our coordinate system and C

on the line (0,o). Then the side AB A \
describes the angle ®, so that it is the $ 00
line (¢,—t7!'), where t = tanz/2 (41.8). )[
We let a, b, ¢ represent the multiplica- / t—t

tive lengths of the sides opposite A, B, C,
so that BC is then the line (b~!,—b!)
(41.7).

We will use suitable rigid motions to compute the lengths a and ¢ in terms of
b and t. For a, we first perform a translation along (0, o) to move C to A. This
acts by x' = bx on ends, so the line (f,—t~') goes to (bt, —bt~!). Now do a rotation
by a right angle that sends 1 to oo, and 0 to 1. This acts on ends by
x' = (x+1)/(—x+ 1) (41.5), so the line (bt, —bt~!) becomes the line

bt+1 —bt 141
(ty,u2) =

~bt+1" bt~ +1
This line will meet (0, «c) at the point that is the image of B under these two
maps. To find the multiplicative length a of the segment BC, we need to find the
line (a, —a) that meets (0, oo) in the same point as (v, uz). Therefore, by (41.11),

e

U

wuy = —a’. Substituting for u; and u; and simplifying, we obtain
14+ bt)(b—t
a_2 — ( + )( ) (1)
(1 —=bt)(b+t)

Next, to find ¢, we perform a rotation around A that sends ¢ to 0. This acts
by x' = (x — t)/(tx + 1) on ends, so that the line (b~', —=b™!) goes to
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b ' —t bt
(v, v2) = (b—lr +1 —b-lt+ 1)'
If ¢ is the multiplicative length of AB, the line (¢!, —¢™!) will meet (0, o0) at the
same point as (vy,v;). Again using (41.11), we obtain vv; = —¢~2, from which
we obtain
2 (bbbt 2)
(14+bt)(1—bt)’

To compute the angle ff, we use (41.12). If s=tanf/2, then —s*=
(b1, =b7';t, —t"1). Writing out the cross-ratio and simplifying, we obtain

5 (1 =hbt)(b—t)
MUEDEY R 3)

In some sense, the formulae (1), (2), (3) accomplish our purpose, because
thereby the quantities a, b, ¢, t, and s are all related to one another. However, to
bring this information into a form that is easier to manage, we will transform
these equations.

From (1) an elementary calculation gives

1—a? 2t 1-b%

1+a? 1-¢  2b “)
From (2) we obtain
1—[;2=1—b2_1+r2 5)
1+c¢2 14 117 ’
and from (3),
2 2
1—s 2t 1-b . (6)

1+s2 1+t 2b

These formulae, which separate the variables in question, suggest the fol-
lowing definition (cf. Exercise 17.6).

Definition
For any angle «, if t = tan /2, define

1 -t
and coso =
+ 2 14t

sino =

[%]

Proposition 42.1
With these definitions, the functions sin o and cosa for angles in the hyperbolic plane
enjoy the usual identities of the trigonometric functions. In particular,

(a) tano = (sinw)/(cosa), and
(b) sin?a+ cos?a = 1.
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Proof From (41.8e) it follows that tana = (2t)/(1 — t?), which gives (a). The
formula (b) is a simple computation from the definitions.

Proposition 42.2
In the hyperbolic plane, let ABC be a right triangle, with angles «, f at A, B, and let a,
b, € be the angles of parallelism of the sides opposite A, B, C. Then

(a) tanx = cosatanb,
(b) cosb = cosacosc,
(c) sinx = cosfisinb.

Proof By (41.9) we have tana/2 = a~! (where as before, a is the multiplicative
length of the side opposite A). Therefore,

2a! 2a

sina = = S
l14+a?2 1442’
1l—a? a*-1
cosa = -
+a? az41
and
_ 2a7! 2a
tana = =

There are similar expressions for b and Z. We use these to interpret the equa-
tions (4), (5), (6), which then become (a), (b), (c).

Proposition 42.3

With the same hypothesis as (42.2) we have the further relations
(d) tanc = sinatana,

(e) sin¢ = tanatanf,

(f) sin¢ = sinasinb.

Proof We will prove (f) and leave (d), (e) as Exercise 42.5. To do this we elimi-
nate « from (a) and (b) of (42.2). From (a),
tana = cosatan E,

and from (b),

cosa = coshcos™ ' L.
Multiplying, we obtain

sinx = cosasinbcos™! C.

Substituting these expressions in cos?a + sin’ o = 1, we obtain

cos?bcos ¢+ cos?asin?bcos™¢ = 1.
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Multiplying by cos? g, we get

2 2

cos? b + cos? asin?h = cos?c.

2

Now use cos? =1 —sin? on a, b, c. We get

1 —sin?b+ (1 —sin?a)sin?h = 1 — sin’c.

This simplifies to

2 z asin?b.

sin“ ¢ = sin

Since the sin function on angles is always positive, we conclude that
sint = sinasinb,

as required.

Remark 42.3.1

The statements of (42.2) and (42.3) plus four more obtained from (a), (b}, (¢), (d)
by reversing the roles of' A and B give one equation for each subset of three of
the five quantities a, b, ¢, a, f. Thus given any two of these, we can calculate the
others.

Example 42.3.2
As an application, let us find the rela-
tion between the sides and the angles of c
an equilateral triangle. Let CD be an al-
titude, let o be the angle at each vertex, f
and let ¢ be the multiplicative length of
the side. Then ACD is a right triangle
with f = «/2. Using (42.3e) we obtain

Asd

sin¢ = tanatano/2. o

Translating back in terms of t = tan «/2 and ¢, this gives

2c 2
14¢2 1—1¢2’

which we obtained by a different method in the Poincaré model (Exercise 39.5).
As another application, we will derive a formula for the area of a circle.

Proposition 42.4

Let 11 be a hyperbolic plane whose field of ends F is a subfield of the real numbers R.
To each angle we associate its radian measure (41.8.1), so as to obtain a measure of
area function (36.2) with values in R. Let T be a circle whose radius has multi-




408 7. Non-Euclidean Geometry

plicative length r. We define the area of T to be the limit of the areas of regular in-
scribed n-gons as n — oo. This limit A exists (as a real number), and

—1)2
g7
r

Proof First we will express the area of a right triangle in a particular form. Let
ABC be a right triangle, with our usual notation, and let ¢ be its area (as an
angle). Then I claim that

. . sinocoso L
sind = ———=— (1 — sing).
sinb

Indeed, since it is a right triangle, = n/2 — o — f§, and
sind = cos(z + ff) = cosxcos f — sinasin ff.

We first use (¢} and (d) of (42.2) and (42.3) to replace cosf and sin f§ by expres-
sions in «, b, and @. Then use (f) to replace sina by an expression in b and c.
This gives the formula above.

Now consider a regular n-gon in-
scribed in the circle, and consider the
triangle formed by the radius to one of
the vertices and the orthogonal to the
midpoint of one side. Its angle o is /n, Y
its hypotenuse is r, and its side we call
b,. Its area is A,/2n, where A, is the

: : T
area of the inscribed polygon. Hence b
n
A, sinm/ncosm/n _
sin — = #(1 — sin 7).
2n sinb,

Multiply both sides of this equation by 2n and take the limit as #n — oo, The limit
of A,, will be A, the area of the circle. The limit of b, is r. We use the convenient
results from calculus that

sinx

lim =1

r—0 ¥

and

lim cosx = 1.
a—0

In the limit we obtain

Substituting
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L 2r
sin¥ = ,
142’
we obtain

2
alr—1)°

L _ar-1)

¥

as required. Note that before we took the limit, all our terms were elements of
the field F. However, in the limit we obtain quantities = and A that are real
numbers, but not necessarily in F.

Remark 42.4.1

Using this result, we can study the question of "squaring the circle” in non-
Euclidean geometry. Of course, there are no squares in a hyperbolic plane, so
the appropriate question would be, given a circle in the hyperbolic plane, does
there exist a rectilineal figure with area equal to the area of the circle?

In the Euclidean case, it we work over the field K of constructible numbers,
for example, the answer is never. Indeed, the formula A = nr? and the fact that
n is transcendental imply that if r € K, then A ¢ K; and conversely, if A € K, then
ré K.

In the non-Euclidean case, that is, in a hyperbolic plane whose field of ends
F is a subfield of R, we find the surprising answer, sometimes ves and some-
times no. Consider a circle of radius v e F. The question is whether the real
number A can be written as a sum of real numbers that are the radian measures
of angles in our geometry. For every angle less than a right angle can be made
equal to the area of some right triangle (Exercise 42.9).

If, for example, the quantity x = (r — 1)*/r € F is a dyadic rational number,
then nx will be the sum of radian measures of angles, because we can bisect a
right angle any number of times. Thus if r = 2, or if r is any power of 2, we ob-
tain circles each of whose area is that of a rectilineal figure.

On the other hand, if F'is the field of constructible numbers, and if x = 15, say,
we can find an re F with x = (v — 1)2,/1', for example r = 11—4(15 +14/29), and a
circle of that radius has area not corresponding to any rectilineal figure, because
an angle of n/7 does not exist in that plane (cf. (29.4) and Exercise 41.11).

Thus the problem of “squaring the circle” is solvable for some circles, and
unsolvable for others.

As another application of our trigonometric formulae, we will give Engel’s
associated triangles. Given a right triangle ABC, with right angle at C, we denote
by a, b, ¢ the multiplicative lengths of the sides opposite A, B, C, and by «, ff the
angles at A, B. We say that the triangle has the five elements (a, b, c, o, ). We will
use the following notation: For any segment a, the corresponding angle of par-
allelism is a, and conversely, for any acute angle «, the segment having that
angle of parallelism is z (40.7.1). Also, for an acute angle z we denote by
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o' = RA — o its complementary angle. 1f a is a segment, then by abuse of notation
we write a’ for ((a)')”.

B
4
¢ D
A~ dc

Proposition 42.5
In a hyperbolic plane, given a right triangle with elements (a,b,c,a,f), there is an
associated right triangle with elements (b, ', &, a’, c).

Proof From (42.2c) we have
sino = cos fisin b.

Replacing f by its complementary angle ', we can write this as
sino = sin f' sin b.

Consider a right triangle with sides b and ' around the right angle. Then by
(42.3f) applied to this new triangle, the third side x will satisfy

. — - 7 . f
sin¥ = sinbsinfl'.

Thus sin¥ = sin . Since the angles X and « are both acute, it follows that ¥ = «,
and so x = &. Thus our new triangle has sides b, §', 4 as required.

To find the angles of the new triangle, call them A, i for the moment. Then
by (42.2a) applied to the new triangle,

tan A = cosbtanf’.

Since the tangent of a complementary angle is the inverse of the tangent of the
angle, we can rewrite this as

tanfi = cosbtan ',
But (42.2a) for the original triangle, with the roles of @ and b reversed, gives
tanfl = cos btana.

Hence tani’ = tana,so A’ = aand 4 = a’.
To find y, use (42.2a) with a, b reversed:

tanu = cos i tan b.
Now, cosf8’ = sin f8, so this gives

tanyu = sin ftan b.
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But (42.3d) with a, b reversed gives

tant = sin ftanb.
So tan i = tanc, and u = ¢, as required.
Remark 42.5.1
If we repeat the operation of taking the associated triangle five times, we recover
the original triangle (Exercise 42.22). Thus one triangle gives rise to a cycle of
five associated triangles. Our definition of the associated triangle depends on the
ordering of the vertices A, B. If we use the reverse ordering, we will go around
the cycle of five triangles in the reverse order.

There is also a geometrical construction of the associated triangle, which
depends on Bolyai's parallel construction (Exercise 42.23).

Exercises

The following exercises all take place in a hyperbolic plane.

42.1 Find the sides and angles of the equilateral triangle formed by the feet of the
altitudes of the trilimit triangle of Exercise 40.8.

42.2 Find the side of an equilateral triangle with angles of 45°.

42.3 Find the sides of an isosceles right triangle with angles 30°, 30°, 90°.
42.4 Find the side of an equilateral pentagon with all right angles.

42.5 Derive the formulae of Proposition 42.3d.e from Proposition 42.2.

42.6 Prove the law of sines: In an arbitrary
triangle ABC, with angles o, ff,y and
opposite sides a, b, ¢,

sinogtana = sinfitanb
= sinytanc.

Hint: Use an altitude to divide the tri-
angle into two right triangles.

42.7 Let AB and BC be two consecutive segments on a line, so that AC = AB+ BC as
segments. Let o, ff,7 be the angles of parallelism associated to AB, BC, and AC,
respectively.

(a) Show that

sinorsin

siny = 7’8

cosocosff+ 1

(b) Derive analogous formulae for cosy and tany.

(c) Verity the following formula, due to Lobachevsky, analogous to the law of
cosines in Euclidean geometry. Let ABC be any triangle, with angles «, ff, y, and
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42.8

42.9

42.10

42.11

4212

42.13

42.14
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opposite sides a, b,c. Then
_— sinasink
cosycosacosh + ————=1
sinc

Note that if y is a right angle, this reduces to Proposition 42.3f.

Given an acute angle o at A, and given o) |74

a segment DE, show that there exists a )

point B on one arm of the angle such |

that the perpendicular BC to the other :

arm is equal to DE. This is a strength- A |

ening of Aristotle’s axiom —cf. (40.8.1). A 11 £
o

Given two angles o, i with o+ f < RA, show that there exists a right triangle with
angles o, fi.

Given three angles o, ff, ¥ whose sum is less than 2RA, prove that there exists a tri-
angle with angles equal to =, ff,y. Hint: Glue together two suitable right triangles,
and make them fit by solving a quadratic equation.

Let T be a right triangle with angles o, and sides a, b,c. Let é be the area of T
(Theorem 36.2). Show that
. cosacosh

tand = —— .
sina + sinb
Given a triangle ABC, let d be its area,
and suppose we are given an angle &'
with 0 < ¢’ < 4. Show that there is a
point D between B and C such that the
area of ABD is equal to §'. Hint: First
draw an altitude from A to BC, and
thus reduce to the case of a right tri-
angle. Then show that the point D can
be found by solving a suitable qua-
dratic equation in F.

Given a point P, a line [, and an acute
angle z, show that there is a line m
through P making an angle « with the
line 1.

Given a point A on a line [ and an end
A of 1, let I be the horocycle defined
by A and 4 (Exercise 41.12). Let m be
a line that meets the ray A4 in a point
C # A. Prove that the line m meets
the horocycle in two points B, B'. Hint:
First reduce to the case m L A. Then
find B using trigonometry and solving
a quadratic equation.
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42.15

42.16

42.17

In this exercise we show how to translate the formulae of hyperbolic trigonometry
into relations among the hyperbolic trigopnometric functions, in the case where our
field Fis a subfield of the real numbers.

For any x € R, we define the hyperbolic trigonometric functions

sinhx = %{e"' —e ),

1. .
coshx = E{e" +e ),
tanh x = sinhx/cosh x.

(a) Assume F= R, and let 4 be the additive distance function of Exercise 41.14.
With our usual notation for a triangle, let @, b, ¢ be the additive lengths 4 of the sides
opposite A, B, C. Show that

sina = 1/cosha,

cosa = tanha,

tana = 1/sinha.
(b) Use these to translate the formulae of Proposition 42.2 and Proposition 42.3. In

particular, show that

tanh b . cosu
———— and cosha =— .
tanh & sinff

cosa =
Again assume F < R and let I" be a circle of radius r, and let x = Inr be the additive
length of the radius (Exercise 42.15).
(a) Show that the area can be written as

A = 4msinh?(x/2).

(b) Expand in power series to show that

: 1
A:n(xz-:——x4+---).
12

Thus the area of a hyperbolic circle is “bigger” than the area of a Euclidean circle
with the same radius.

Use a limiting process similar to the one in Proposition 42.4 to define the multi-
plicative length p of the circumference of a circle of radius r, and show that

2m
In(p) = tan7’

If F is the field of constructible numbers, do you think that the circumference of a
circle can ever be rectifiable, i.e., have length equal to the length of a segment in
the plane?
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42.18 Let T be an equilateral triangle with all angles equal to 30°. Find, and express using
square roots in standard form (Exercise 13.2),

(a) the radius of the inscribed circle;
(b) the radius of the circumscribed circle;
(c) the radius of the circle with the same area.
Check: Decimal answers to two of the above are 1.6093 and 8.1266.
42.19 Let S be a regular quadrilateral (all 4 sides equal and all 4 angles equal) whose area
is equal to the area of a circle of radius 3.
(a) find the radius of the inscribed circle
(b) find the radius of the circumscribed circle
(c) find the side of the quadrilateral.
Check: Decimal equivalents to two of these are 7.3276 and 27.8205.
42.20 Find an element R € F such that a circle of radius r admits a circumscribed hexagon
if'and only if r < R.

42.21 Use Proposition 42.3f and Exercise 42.7¢ to derive the non-Euclidean (111.36) for-
mula of Exercise 39.19. If d = u(} PA), ¢ = u(1PB), and f= u(}PC), show that this
formula can be written cos?d = cosécos f.

42.22 Show that the operation of taking the Engel associated triangle (Proposition 42.5)
five times gives back the original triangle.

4223 In the figure of Bolyai's parallel con-
struction ( Proposition 41.10), consider
the right triangle ABC = TPS.

(a) Show that any right triangle ABC P S

can be embedded as the triangle TPS b

in the figure of Bolyai's construction. T

(b) Draw the ll'mi_t'lng parallel ray d v ’
from P to the ray SR, and let it meet QR N y:

QR at U. Show that the triangle

A'B'C’ = PUQ is the associated trian-

gle to ABC (Proposition 42.5). Hint: !
Get two elements of the new triangle

from the figure; then use the tormulae

of Propositions 42.2 and 42.3 to get the

others.

42.24 1f ABC is a right triangle with elements (a, b, ¢, o, f), and if a, b, ¢ € Q, show that also
a ol Bl a’ b’ ¢ are in @ (using the notation of Proposition 42.5). Hint: Use the
formula tano/2 = sino/(1 + cos ).
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42.25 In Euclidean geometry, if we have a right triangle whose sides a, b, ¢ are integers,
then a? + b* = ¢*, and we call the triple (a,b,c) a Pythagorean triple. For example
(3,4,5) and (5,12,13) are Pythagorean triples. If we have a right triangle with a, b, c
rational numbers, then multiplying by a common denominator, we can replace it
by a similar triangle with integer sides.

In hyperbolic geometry, if we have a right triangle with sides a,b,¢ € Q, we will
call this a non-Euclidean Pythagorean triple. Since there are no similar triangles, we
cannot reduce these necessarily to integers.

(a) Show that (a, b, ¢) is a non-Euclidean Pythagorean triple if and only ifa, b,c € @,
a,b,c> 1, and

20 2b 2c

1+a2 1+b2 1+c2

(b) Verify that (3,7,}) satisfies the equation of (a).

(c) Use Engel's associated triangles to find four more solutions to (a).

(d) Show that (a) has no solutions in integers greater than 1. Hint: Estimate the
sizes of the quantities involved.

(e) Find more solutions to (a), besides the ones in (b) and (c).

43 Characterization of Hilbert Planes

Thinking back to our study of Euclidean geometry, recall that we pursued two
different logical paths. One was the abstract development of a geometry from
axioms. The other was the analytic approach given by the Cartesian plane over
an ordered field F. We brought these two paths together by introducing the field
of segment arithmetic into the abstract geometry (Section 19) and then showing
that any Hilbert plane with (P) is isomorphic to the Cartesian plane over its field
of segment arithmetic (Section 21). To express this in other words, a Hilbert
plane with (P) is characterized as the Cartesian plane over a certain Pythagorean
ordered field F. It follows that two Hilbert planes with (P) will be isomorphic, as
abstract geometries, if and only if their associated fields are isomorphic, as
ordered fields.

In this section we will do the same thing for non-Euclidean geometry. For
Hilbert planes satisfying (L), which we have called hyperbolic planes, we will
prove a coordinatization theorem analogous to the one in the Euclidean case.
For more general Hilbert planes we will discuss the theorem of Pejas, some
ideas of its proof and some consequences, but we cannot enter into tull details.
We also describe the calculus of reflections initiated by Hjelmslev, and use it to
give a proof of the three altitudes of a triangle theorem in neutral geometry.
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We have developed some properties of the abstract hyperbolic planes in
Section 40. On the other hand, we have introduced the Poincare model over a
field in Section 39, and have used the ambient Cartesian geometry to investigate
some of its properties. Then in Section 41 and Section 42 we have introduced the
field of ends into an abstract hyperbolic plane, and have used the field to create
a sort of hyperbolic analytic geometry and trigonometry.

The last step in this logical progression is to characterize the hyperbolic
planes by showing that a hyperbolic plane is determined, up to isomorphism, by
its associated field of ends, and that any hyperbolic plane is isomorphic to the
Poincare model over its associated field.

Proposition 43.1

Given a hyperbolic plane 11, the field of ends is uniquely determined, up to iso-
morphism. Two hyperbolic planes 11, and 11, are isomorphic as Hilbert planes if and
only if the associated fields Fy and Fy are isomorphic as ordered fields.

Proof Of course, the set of ends in the plane Il is uniquely determined. But in
order to define the field structure on this set (41.4), we made a choice of two or-
thogonal lines, and labeled their ends 0, e0,1, —1. If we made a different choice,
a different end might become the zero element of the field, so clearly the field
structure on the set of ends is not unique. But we will show that the field is
unique up to isomorphism.

So suppose I, m; are two orthogonal lines with ends labeled 0,, ooy, 17, — 14,
giving rise to a field structure F; on the set of ends (minus o0, ). Suppose Iy, m; is
a second choice of orthogonal lines with ends labeled 0;, o0y, 15, —1;, giving a
second field structure F,. We can find a rigid motion ¢ of the plane that takes [,
to Iz and n to mz, in such a way that the ends 01, 201,11, —11 are sent to the
corresponding ends 03, @3, 13, —15. This rigid motion induces a one-to-one cor-
respondence from the set of ends of 11 to itself, which therefore gives a one-to-
one map of F; to F, sending the elements 01, 1;, —1, of F; to the corresponding
elements of F;. The constructions that we used to define addition and multipli-
cation in F) are now carried over to the corresponding constructions for F;, and
the ordering is preserved. Therefore, ¢ induces an isomorphism of F; and F;
as ordered fields, which shows that the field associated to Il is unique up to
isomorphism.

Now suppose that II; and [l are isomorphic hyperbolic planes. If
@ : I1; — Il; is an isomorphism, we can choose orthogonal lines I, and m; in I,
with which to construct the field of ends F, of II;, and then take I, = g(l;),
my = ¢(m;) to construct the field of ends F; to ll;. Then it is clear that the
induced map ¢’ : F; — F; on ends will give an isomorphism of fields.

Finally, let 11, and 11, be hyperbolic planes, and suppose that we are given
an isomorphism i : F; — F; of the associated fields of ends. We wish to show
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that I1; and I1; are isomorphic Hilbert planes. That is to say, there is a map
¢ : 11} — I, of the points that is one-to-one and onto, and ¢ preserves lines,
betweenness, and congruence line segments and angles.

We construct ¢ as follows. First extend the map  : F| — Fy to the set of all
ends by setting /(0;) = o0y. Any line of I1; is given by an unordered pair (o, f§)
of distinct elements of F| = Fy U{ov,}. So by sending (o, ff) to (y(x), ¥ (f)), we
obhtain a one-to-one map of the set of lines of 11, onto the set of lines of ;. A
point P of I1; is determined by the set of all lines passing through it, and this set
of lines satisfies an equation of the form

wuz — b(uy + uz) +a? =0

with a,be F,, a >0, and |b| < a (41.6). Since ¥ is an isomorphism of ordered
fields, the set of images by ¢ of the lines containing P will satisfy a similar equa-
tion in F;, and so they will define a unique point that we denote by ¢(P). Then
by construction ¢ is a one-to-one map of the set of points of 11} onto the set of
points of I1;, sending lines into lines.

Since betweenness of points can be expressed in terms of the ordering
of the field of ends, and ¥ is an isomorphism of ordered fields, ¢ preserves
betweenness.

Congruence of line segments can be measured by the multiplicative distance
function u (41.7), and congruence of angles can be measured by the tangent
function (41.8). Therefore, the map ¢ : [1; — II; also preserves congruence of
line segments and angles. Thus ¢ is an isomorphism of Hilbert planes, as
required.

Theorem 43.2

Let F be a Euclidean ovdeved field, and let 11 be the Poincaré model constructed over
the field F (Section 39). Let F be the field of ends of 11. Then F and F, are isomorphic
ordered fields.

Proof Our strategy is to establish a one- A

model, to show that the field structures
are isomorphic.

We may assume that the Poincaré
model is constructed using the unit
circle I' in the Cartesian plane over
F (Exercise 39.23). Let us choose the

7\
r
to-one correspondence between the sets
F and F,, and then carry out the con-
structions of addition and multiplication 0 P o
in F}] in the geometry of the Poincaré ! X
y
-
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x-axis and y-axis to be the orthogonal lines used in the construction of the field of
ends F. Recall that the points of the Poincarée model are those points of the
Cartesian plane inside I'. It follows that the ends of the Poincaré model I are
exactly the Cartesian points of the circle I'. We label the ends of our two axes so
that

0, = (=1,0),
w1 = (1,0),
1, = (U_, 1),
-1, = (0, -1),

in Cartesian coordinates.

The next step is to give a mapping of sets between the elements of the fields
F and F,. The elements of F, are all the points of the circle I' except co = (1,0).
We define a map ¢ : F} — F as follows. First we set ¢(0;) = 0. Next, for any end «
in the upper semicircle of ', we set p(a) = tan @/2, where @ is the angle from 0,
to o subtended at the center of the circle. If —# is the reflection of this point in
the x-axis, we set ¢(—u) = —¢(z). Here we understand ¢ to be the angle in the
Cartesian plane, and the tangent function has its usual meaning (Section 16). As
o ranges over the upper semicircle, @ ranges over all possible angles (between 0
and 2RA), so the function tan #/2 ranges over all positive elements of the field F.
Given any element a € F, a > 0, there is an angle 6 such that tan /2 = a, so this
mapping ¢ is a one-to-one correspondence between the sets Fy and F. Clearly, ¢
preserves the ordering on the two sets.

The hard work we must do is to show that ¢ is compatible with the oper-
ations of addition and multiplication in the two fields. We start by computing the
Cartesian coordinates of an end « € Fy, which is a point of the circle I', in terms
of p(z). We will do all our calculations for points « in the upper semicircle, since
the results for their negatives will follow immediately.

Solet w e Fy, o > 0. Let g(z) = a = tan@/2. It follows that the Cartesian coor-
dinates (x,y) of « are given by

2
< —1
x=—c05()'=a—,
14 a?
2a
= sinfl = .
Y = sin Tt

Here we use the usual trigonometric formulae expressing sinf and cosf in
terms of tan #/2 (cf. the calculations of Exercise 17.6).
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To study addition, we will compute
the reflection ¢, in a line (&, o). In the
Poincare model, reflection is given by
circular inversion in the corresponding
Cartesian circle (39.5). So given a point o
o on I, let A be the Pline (x, o), which
is a circle orthogonal to I’ at the points «
and co. Let A be the center of this cir-
cle. Then by a little elementary Eucli-
dean geometry we see that the angle Ul\
OAco, is equal to 6/2, so the coor- ;
dinates of A are (1,a™!).

The P-reflection in A is circular inversion in A in the Cartesian plane. To
study its effect on ends, let f be any end, and let y be its image under reflection
in A. Since I"and A are orthogonal circles, 7 is just the intersection of the line Af
with I'. Let ¢(f) = b and ¢(y) = c. Then f and y have Cartesian coordinates

2_
g = b 1’ 2b !
145271+ b2

o c?—1 2c
R R Ay

To express the fact that A, ff, y are collinear, we set the slopes of Aff and Ay equal
to each other. This gives

2b . 2c 1
1+p2 :m_“
b? -1 ¢t —1
1+b2 1+c¢2

Simplifying, we get
2a(b —c) = b? — %
Assuming fi # 7, so b # ¢, we can divide out b — ¢, and so
c=2a-—b.

Thus the reflection in A, which is a,, has an effect on ends in F;, which is trans-
formed by ¢ into the transformation

x' = 2¢p(a) — x

for elements of F.
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Recall that addition of ends is characterized by
Goifp = Op00Oy
using reflections (41.3). Via the mapping ¢ : F| — F, therefore, g,,4 becomes
x'=2¢(a+p) —x
On the other hand, g0, becomes a transformation that first sends x to

2¢(x) — x,
then to

29(0) — (2(x) — x),
then to
2p(B) — [29(0) — (29(2) — ¥)] = 20(2) + 20(5) — x.
We conclude that
p(a+ B) = (o) + p(B),

so that ¢ is a homomorphism for addition.

Now let us consider multiplication.
To do this (changing notation) we con- X
sider the reflection 6, in a line (&, —a) in
the Poincaré model. This is given by [y
circular inversion in a circle A, orthogo-
nal to I', passing through the points «
and —uz. Let A be the center of this
circle. Then the angle OAx is equal to i
0 — RA in our diagram. Thus OA =
—1/cosf. If p(a) = a = tan@/2, then —d

1+a?
2= (52.0).
as—1

Now let ff be another end, and let y be its image under #,, which is circular
inversion in A. Then A, 8,y are collinear. Letting ¢(ff) = b and ¢(y) = ¢ as before,
we express the collinearity by equating the slopes of the lines Af and Ay. This
time we get

2b 2c

1+ b? _ 1 +c?
b2—-1 14a®* ¢2-1 14a?%
1452 a—1 14¢2 a:-1

Simplifying gives
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be(b —¢) = a*(b — ¢).
Assuming b # ¢, we get
¢ =a’b .
Thus the reflection g, is transformed by ¢ into the transtormation
2 = (o) !
in F.

Going back to the hyperbolic plane, it is easy to see that the composition
g0, is equal to a translation along the line (0, «0) (cf. proof of (41.4)) that sends
1 to #?. On the other hand, multiplication is defined by composing translations.
So multiplication is characterized by the formula

G401 = OpG1G,401,
or simply
Tap = Op010,.
Transporting this by ¢, we find that for elements of F, the transformation
x' = g(af)*x!
is equal to
x' = qo(ﬁ)zw{-st)2x_1.

We conclude that ¢(off) = @(x)e(f) as required.

We have now shown that ¢: F) — F is a one-to-one transformation com-
patible with addition, multiplication, and the ordering. Hence F| and F are iso-
morphic as ordered fields.

Corollary 43.3
If Tl is a hyperbolic plane with associated field of ends F, then 11 is isomorphic to
the Poincare model over the field F.

Proof Indeed, the field F is Euclidean (41.4), and the plane I1 and the Poincare
model over F both have isomorphic fields of ends by (43.2), so by (43.1) they are
isomorphic planes.

Corollary 43.4
The circle-circle intersection property (E) holds in a hyperbolic plane.

Proof Indeed, the field of ends is Euclidean (41.4), the hyperbolic plane is iso-
morphic to the Poincaré model over that field, and (E) holds in the Poincaré
model (39.9).




43. Characterization of Hilbert Planes 423

Remark 43.4.1
Thus in a Hilbert plane, the axiom (L) of existence of limiting parallels implies

(E).

Remark 43.4.2

In fact, a stronger result holds. Namely, in any hyperbolic plane, given any two
curves each of which is either a line or a circle or a horocycle or a hypercycle,
they will intersect if a certain betweenness condition is satisfied (which we leave
to the reader to make explicit). Indeed, these all correspond to various Euclidean
circles in the Poincare model (Exercise 39.14), and these will meet by (E) in the
ambient Cartesian plane.

The Classification of Hilbert Planes According to Pejas

So far in this book we have seen two classification theorems. One was that any
Hilbert plane with (P) is isomorphic to the Cartesian plane over a Pythagorean
ordered field (21.1), and in this section we have seen (43.3) that any hyperbolic
plane is isomorphic to the Poincaré model over a Euclidean ordered field. These
are both special cases of a more general theorem due to Pejas (1961), which
gives an algebraic model of any Hilbert plane. The value of a classification
theorem is that it allows one to prove theorems essentially by checking what
happens in all possible planes, even when one does not have a direct proof.
Examples of such reasoning that we have already used are (21.2), that (LCI) is
equivalent to (E) in a Hilbert plane with (P), and (43.4), that (E) holds in any
hyperbolic plane. A consequence of Pejas's general theorem is that (LCI) is
equivalent to (E) in any Hilbert plane.

To explain properly the complete statement of Pejas's theorem would carry
us too far beyond the realm of the present book, so I will give only some partial
statements of the theorem, some applications, and some comments on the main
ideas of the proof. For full details, see the paper of Pejas (1961) and the books of
Bachmann (1959) and Hessenberg-Diller (1967).

To begin with, let us consider a general method of constructing subplanes of
a given Hilbert plane.

Definition

A full subplane of a Hilbert plane 11 is a Hilbert plane Il whose points are a
subset of the points of I1, whose lines are the intersections of the lines of 11 with
the points of Il whenever that intersection is nonempty, and whose between-
ness and congruence are induced from the ambient plane. (See, for example,
(18.4.3), Exercise 18.5, and Exercise 39.24.)

For any Hilbert plane we will consider the group G of segment addition of the
plane. This is an ordered abelian group whose positive elements are the con-
gruence equivalence classes of line segments (cf. (19.1) for the addition of seg-
ments, and the additive part of (19.3) for the existence of the group G). For ex-
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ample, in the Cartesian plane over a field F, the group G is just the additive
group of the field (F,+). In the Poincaré model over a Euclidean field F, it is the
group of positive elements of the field under multiplication (F.q,-) using the
multiplicative distance function (39.10).

We say that a subgroup M of an ordered abelian group G is convex if a,be M
and a < ¢ < b in G implies ¢ € M.

Proposition 43.5
Let 11 be any Hilbert plane with group of segment addition G.
(a) If llg < 11 is a full subplane, then the group of segment addition of 11y is a
nonzero convex subgroup M of G.
(b) Each nonzero convex subgroup M of G arises from a full subplane as in (a).
(c) Two full subplanes 1y and 11y of 1l give the same subgroup M < G if and
only if there is a vigid motion of 11 taking 11, to I1;.

Proof (a) Obviously, M is a nonzero subgroup of G. To show that M is convex it
is sufficient to show that Il is convex, namely, it A, B are points of [l and Cis a
point of 11 that lies between A and B, then C is in I1,.

To do this, take points D, E in Il
such that D is not on the line AB, and E D
is between A and D. Let [ be the line EC
of TI. Since Il is a full subplane of Il
and the line [ contains a point E of 1, it
follows that I' =1N1l, is a line of Ilj.
Now, [' meets one side of the triangle
ABD. It cannot meet BD, since | does
not, so by Pasch's axiom it must meet C"W
AB. The intersection point is C, so
C e Ily.

(b) Given M a nonzero convex subgroup of G, fix a point O € 11, let 1 be the
set of points A of Il such that the segment class [OA] is in M, and take for lines of
1y the nonempty intersection of lines in Il with I1;. We must verify that Il sat-
isfies all the axioms of a Hilbert plane. They all follow immediately from the
corresponding axioms of Il or from (C1), which is the only nontrivial one.

To verify (C1), let AB be a segment in Il,, and suppose we are given a point
C and a ray r emanating from C. By the axiom (C1) in [l, there is a unique point
D e 11 on the ray r such that AB = CD. We have only to show that D e [1,. From
(1.20) it follows that AB < OA + OB. Since A,Belly, we have [OA]eM and
[OB] e M. But M is a convex subgroup of G; therefore, [AB] € M also. This shows
that M is equal to the group of segment addition of I1,.

To continue the proof of (C1), use (1.20) again to see that OD < OC + CD.
Now, C e Il implies [OC] € M. Also, CD = AB implies [CD] e M. Since M is a
convex subgroup of G, it follows that [OD] € M, so D € Il,. We leave to the reader
to check special cases where some points coincide with O.
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(c) If there is a rigid motion taking I, to I1;, then they clearly give the same
subgroup M < G. Conversely, suppose Il and Il give the same subgroup M. Fix
a point A € Il and a point A; € I1;. Then I, is equal to the set of points Be Il
for which [AqB] € M, and similarly for Il,. Thus any rigid motion of Il that takes
Ag to Ay will take 11, to I1;.

Corollary 43.6
If a Hilbert plane is Archimedean, it has no proper full subplanes.

Proof The group of segment addition of an Archimedean plane satisfies the
Archimedean property (A’), namely, for any a,be G, a,b > 0, there exists an
integer n such that na > b. In this case the only nonzero convex subgroup is the
whole group, so there can be no proper subplanes.

Now we can state (without proof) a somewhat restricted form of the theo-
rem of Pejas (1961), using the language of full subplanes.

Theorem 43.7 (Pejas)

(a) Any semi-Euclidean Hilbert plane is a full subplane of the Cartesian plane
over a Pythagorean ordered field F.

(b) Any semielliptic Hilbert plane satisfying (E) is a full subplane of a plane of the
form given in Exercise 34.14b over a non-Archimedean Euclidean ovdeved field F.

(c) Any semihyperbolic Hilbert plane satisfying (E) is a full subplane of the Poin-
care model in the unit circle over a Euclidean ordered field F.

For Hilbert planes that do not satisfy the circle axiom (E), the statements are
more complicated. For example, in the semihyperbolic case one must allow
Poincaré models in (possibly virtual) circles of the form x? + y* = d over Pytha-
gorean ordered fields satisfying additional conditions similar to (xd) of Exercise
39.26. We omit the details.

For the cases treated in (43.7) we see using (43.5) that to give a complete
description, we need only specify the field giving the main model and then a
nonzero convex subgroup M of its group of segment addition G. In the semi-
Euclidean case, G is the additive group of the field (F,+). In the semielliptic
case, G is the subgroup of infinitesimal elements in the circle group of the field
(Exercise 17.6), since arcs on the sphere are measured by the angles they sub-
tend at the center of the sphere. In the semihyperbolic case, G is the multi-
plicative group of positive elements (F., ) of the field.

In the original paper of Pejas, he gave two apparently unrelated con-
structions for the semihyperbolic planes, which Hessenberg and Diller (1967,
Section 68) called the modular and the nonmodular case. In our formulation
there is a single construction for both—the distinction being whether M consists
entirely of infinitesimal elements or not (Exercise 43.6).
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Now let us consider some consequences of this theorem.

Corollary 43.8
A Hilbert plane satisfying (A) and (E) is either the Cartesian plane or the Poincare
model over a Euclidean ordered field F.

Proof From the hypothesis (A), it follows that the field F of the theorem is Ar-
chimedean (Exercise 43.9). This rules out the semielliptic case, so our plane is a
full subplane of a Euclidean or hyperbolic plane. But by (43.6) there are no
proper full subplanes. So our plane must be Euclidean or hyperbolic.

In the semi-Euclidean case this result follows from our earlier work without
using Pejas's theorem (35.4). In the semihyperbolic case, the corollary gives the
remarkable implication

(A) + (E) + (~P) = (L).

There is no direct proof (without classification) for this result, which is essen-
tially the same as the problem we discussed earlier of proving Bolyai's parallel
construction without assuming beforehand the existence of the limiting parallel
ray (41.11.1).

See the exercises for further consequences of Pejas's theorem.

Now let us say a few words about the proot of Pejas’s theorem. It proceeds in
three stages. The first stage is to extend a given Hilbert plane by the addition of
new “ideal” points and "ideal” lines, so that the original plane is embedded in a
projective plane. We have already seen two examples of this procedure. One
was in Exercise 6.7, where we add ideal points to an affine plane, or for example
a Buclidean Hilbert plane, to obtain a projective plane. The other was in
(40.10.1) and Exercises 40.11, 40.12, where a similar but more subtle construc-
tion is given for a hyperbolic plane.

The idea of introducing ideal points seems to go back to von Staudt (1847)
for the Euclidean plane, and to Klein for the hyperbolic case. Pasch (1882) car-
ried out this procedure using properties of three-dimensional space. The first
person to succeed using plane geometry only, in the form of Hilbert's axioms,
was Hjelmslev (1907). Making extensive use of reflections and the group of all
rigid motions of the plane, he showed how to embed an arbitrary Hilbert
plane in a projective plane, and he was able to prove that this projective plane
satisfies “Pascal's theorem,” which is a projective analogue of Pappus’s theorem
(14.4).

The second stage is to introduce coordinates into the projective plane. This
problem also has its roots in the early nineteenth century. Again, von Staudt was
probably the first, with his theory of “Wurfe,” to introduce a rational net of
points, and thus by continuity to obtain real-number coordinates. But by the end
of the nineteenth century there was growing interest in building foundations of
geometry without continuity. The significance of Pascal's theorem was made
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clear by Hilbert (1899), who showed that it was precisely the condition for the
field of segment arithmetic to be commutative. The construction was general-
ized by Schwan, and finally reached its modern form in the book of Artin (1957),
where the elements of the field appear as operators on the group of translations
of an affine plane.

These two stages are explained in detail in the book of Hessenberg-Diller
(1967), Sections 37-44 for the work of Hjelmslev, and Sections 55-58 for the in-
troduction of coordinates in the projective plane.

The third stage, which was accomplished by Pejas in his thesis, is to identify
those subsets of the projective planes that give Hilbert planes. We will not give
any details here, except to point out that Pejas’s work was done in the context of
the “metric planes" of Bachmann (1959).

Bachmann's observation was that the work of Hjelmselv took place almost
entirely in the group of rigid motions of the plane and made little use of the
order relation. So Bachmann defined the notion of a “metric plane” in which
yvou retain the properties of incidence and orthogonality, but forget order and
congruence. To any line we associate the reflection in that line, and to any point
we associate the reflection in that point. Then we forget the original points and
lines, and axiomatize geometry purely within the group of rigid motions (see
Bachmann (1959), Section 3.2, for his axiom set).

Bachmann's metric planes include all Hilbert planes, but also include elliptic
geometry, some finite geometries, and many others. Generalizing the work of
Hjelmslev, Bachmann is able to embed any one of his metric planes in a projec-
tive metric plane. The Hilbert planes appear as those metric planes with an
order relation satisfying Hilbert's axioms (B1)-(B4) and having free mobility —
essentially what we call (ERM).

It is based on Bachmann's formulation of this whole theory that Pejas proves
his theorem.

The Calculus of Reflections

To illustrate this new approach to geometry, we will give some elementary
results in the calculus of reflections, initiated by Hjelmslev, and elevated by
Bachmann to a position of central importance in the theory of metric planes.
This calculus of reflections is analogous to analytic geometry, in that it gives an
algebraic method of treating geometric problems. It has advantages over the
usual analytic geometry in that there is no arbitrary choice of coordinate axes
and it works in an arbitrary Hilbert plane.

Fix a Hilbert plane. We denote by G the group of all rigid motions of the
plane, and by S the subset of G consisting of reflections in a line. We know that
tor every line a there is a reflection ¢, in that line, and these reflections gener-
ate the group of rigid motions (cf. proof of (17.4) and Exercise 17.3). For sim-
plicity we will denote g, simply by a e S, and for any point A, we denote by
A € G the point reflection (= rotation through 2RA) around that point.
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Proposition 43.9

If a,b are two distinct lines, then ab = ba (in the group G) if and only if aLb. In
that case the product A = ab is the point veflection in the intersection point A of a
and b.

Proof 1If alb, then clearly A = ab is the point reflection and ab = ba.

Conversely, suppose ab = ba. Let P be any point of a not lying on b. Let
ba(P) = b(P) = P' be the reflection of P in b. Then ab(P) = a(P’) = P'. So P’ also
lies in a. Since P ¢ b, P # P'. Then b is the perpendicular bisector of the segment
PP', which lies on the line a, so a L b.

Proposition 43.10

If four lines a, b, ¢, d pass through a point,

then ab = cd if and only if the acute (or

right) angles formed by a,b and ¢,d are

equal and the (acute) rotation from a to b 3
has the same orientation as from ¢ to d.

In that case also ba = dc, ac = bd, and

ca = db.

Proof The motion ab is a rotation

through twice the acute angle between %
a and b, in the opposite direction (cf.

Exercise 17.4). So if ab = ¢d, they give

the same rotations, and the result is

clear. If we take the same rotations in

the reverse direction we get ba = dc. If

we add (or subtract) the rotation from b

to ¢, we get ac = bd and ca = db.

Proposition 43.11

If a, b, c,d are four lines perpendicular to a
line I, and meeting 1 in A,B,C,D, then
ab = cd if and only if the segments AB
and CD are equal and have the same ori-
entation on . In that case also ba = dc,
ac = bd, and ca = db.

Proof Note that ab is a translation
along the line I (cf. proof of (41.4)) of P < A
twice the segment AB, in the opposite

direction. So the proof is analogous to

the previous proof.
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Proposition 43.12

Let a,b be lines, and let C,D be distinct
points. Then aC = bD if and only if a,b
are perpendicular to the line CD, and the
segments AC and BD are equal, in the
same orientation, wheve A, B are the
points aN CD, b N CD.

Proof Note that aC is a glide reflection
along the line through C, perpendicular
to a, in an amount equal to twice the
segment AC. So if aC = bD, they have
the same axis, which must be the line
CD. The rest is clear.

Proposition 43.13

Let a,b be lines and C, D distinct points.
Then aC = Db if and only if a, b are per-
pendicular to the line CD, and the seg-
ments AC, BD are equal, in reverse order.

Proof Similar to previous proof.

Proposition 43.14 (Hjelmslev)

In any Hilbert plane, given a quadrilateral
ABCD with right angles at B, D, draw the
diagonals e, f, and drop perpendiculars
AG,CH from A and C to f as shoun. Then
(in the notation of the diagram):

(1) ag = ed.
(2) be = hc.
(3) Bg = hD.

In particular, the angles marked at A and
at C are equal, and the segments BG, HD
are equal.

A C rB D
N b
Ia <> s
o b

Proof By the theorem of three reflections (Exercise 17.14), we can find lines
g’. " such that ag’ = ed and be = h'c. Using B = ba and D = cd (43.9) and sub-

stituting, we obtain

Bg’ = bag' = bed = h'cd = h'D.

Now, by (43.13), g’ and h’ are perpendicular to the line BD = f,so g =g', h = h'.
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This gives (1) and (2) and (3) above. The equalities of angles and segments fol-
low from (43.10) and (43.13).

Remark 43.14.1
We call ABCD as above a Hjelmslev quadrilateral. This important result plays a
role in neutral geometry analogous to the role of cyclic quadrilaterals in Eucli-
dean geometry. In fact, it can also be proved easily in Fuclidean geometry using
cyclic quadrilaterals (Exercise 5.19).

Note that the result and its proot work equally well if A,C are on the same
side of BD.

As an application, we prove the theorem on the intersection of the altitudes
of a triangle in neutral geometry.

Theorem 43.15
In any Hilbert plane, if two of the altitudes of a triangle meet, then all three meet at
the same point.

Proof 1In the triangle ABC, let the altitudes BE, CD meet at H. Draw the line DE,
and drop perpendiculars x, y,z,w from B, C, A, H to that line. Let AH be the line
f. We want to show f L a.

We have a Hjelmslev quadrilateral AEHD, which by (43.14) gives fe = dw at
H, bz = fc at A, and DW = ZE. There is another Hjelmslev quadrilateral BECD,
which gives cx = ae at B, ad = by at C, and XD = EY. Combining the last state-
ments of each and adding ZW, we obtain ZX = YW, so zx = yw by (43.11). Now
let us calculate:

afe = adw = byw = bzx = fcx = fae.

Canceling e gives af = fa, so by (43.9), fis perpendicular to a, as required.

A
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Exercises

43.1

43.2

43.3

43.4

43.5

43.6

43.7

43.8

Show that the result of Exercise 1.15 holds in an arbitrary hyperbolic plane.

If a semihyperbolic plane Il satisfies Dedekind's axiom (D), show (without using
Theorem 43.7) that Il is isomorphic to the Poincaré model over the real
numbers R.

(a) Use Theorem 43.7 to show that in a semi-Euclidean plane, Aristotle’s axiom
(Section 33) implies (P).
(b) Now prove the same result without using Theorem 43.7, by strengthening the
proot of Proposition 35.4 to replace (A) by Aristotle’s axiom.
Use Theorem 43.7 to show that in any semi-Euclidean Hilbert plane, the following
three conditions are equivalent:

(1) (LCI) holds.

(ii) The field I is Euclidean.
(iii) (E) holds.
Use Theorem 43.7 to prove that in a semi-Euclidean plane, given any segment AB,

there exists an equilateral triangle with side AB. Can you prove this without using
Pejas's theorem?

We say that the Lotschnitt axiom of Bachmann holds in a Hilbert plane if for any
four lines a, b, c,d with a L b, b L e, e Ld, it follows that a meets d.

(a) Show that the Lotschnitt axiom holds in any semi-Euclidean or semielliptic
plane.

(b) If Iy is a full subplane of the Poincaré model 11 over a Euclidean ordered field

F, corresponding to a nonzero convex subgroup M of the group G = (F.y, ), show
that the following conditions are equivalent:

(1) The Lotschnitt axiom holds in I,.

(i) All elements of M are infinitesimal (ie., of the form 1+x for xeF
infinitesimal).

(iii) The angle sum of any triangle differs from 2ZRA by an infinitesimal angle.

These conditions describe what Hessenberg-Diller call the “modular” case; other-

wise, Ilp is called nonmodular. Thus we see that the Lotschnitt axiom characterizes

geometries in which the angle sum of a triangle differs at most infinitesimally from
2RA.

Show that the Lotschnitt axiom (Exercise 43.6) is equivalent to Legendre's axiom
(ct. Section 35) for a right angle: Namely, for any point P in the interior of a right
angle, there exists a line meeting both sides of the angle.

Show in any Hilbert plane (without using classification) that (A) plus Lotschnitt
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implies (P). (Pambuccian (1994) strengthens this result to Aristotle’s axiom plus
Lotschnitt implies (P).)

43.9 Let F be a non-Archimedean ordered field, and let M be a nonzero convex sub-
group of either (F,+) or (F.o,-) or the circle group of F (Exercise 17.6). Show that
M cannot be Archimedean.

43.10 Use Theorem 43.7 to prove the theorem of Greenberg (1988) that a Hilbert plane
satistving (E) plus Aristotle’s axiom must be Euclidean or hyperbolic.

43.11 (a) Let Iy and I1; be two semi-Euclidean planes represented as full subplanes of
Cartesian planes over Pythagorean ordered fields Fy, F3, by convex subgroups
M, € (F,+) and M; € (Fy,+). Show that Il and 11, are isomorphic (as abstract
Hilbert planes) if and only if there is an isomorphism ¢ : F; — F, and a nonzero
element 4 € Fy such that M, = 4 - p(M;).

(b) Similarly, let Il and I1; be semi-hyperbolic planes represented in the Poincare
models in the unit circles over Euclidean ordered fields Fy and F; by convex sub-
groups M; and Mz of the multiplicative groups of positive elements. Show that I,
and I1, are isomorphic if and only if there is an isomorphism ¢ : F; — F, such that
(M) = M;.

43.12 This and the following two exercises take place in an arbitrary Hilbert plane, using
the notation of the calculus of reflections.

(a) If A is a point and b a line, show that A € b < Ab = bA.

(b) If a,b are two lines that meet, show that ¢ is an angle bisector of one of the
angles between a, b < ac = cb.

(¢) If A, B are two distinct points, then a line h is the perpendicular bisector of the
segment AB < Ah = hB.

43.13 Using the calculus of reflections, prove that the three angle bisectors of a triangle
meet, as follows. Given the triangle ABC, let two angle bisectors d, ¢ meet at a point
P. Drop a perpendicular x from P to a. Let f= xed by the theorem of three re-
flections (Exercise 17.14). Then prove that fis the angle bisector at C.

B ~
43.14 Using the calculus of reflections, prove that if two of the perpendicular bisectors of
the sides of a triangle meet, then all three meet in the same point, as follows: Let
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two perpendicular bisectors d, e meet at P. Let x be the line AP, Let f = xed. Then

show that fis the perpendicular bisector of AC.

A

C

Q3

43.15 If you are curious about the theorem of the three medians in neutral geometry,
look in Bachmann (1959) p. 74 and see whether you can understand the proof

there.

43.16 Given an angle BAC, two rays AD, AE making equal angles with the angle bisector
of BAC are called isogonal conjugates.
Let ABC be a triangle, and let AD, BE,CF be three concurrent lines in the tri-
angle. Prove that the isogonal conjugates of AD, BE, CF, with respect to the angles
of the original triangle, are concurrent.

A

D

43.17 In a non-Archimedean hyperbolic plane, let I be a circle of infinite radius r (ie.,
#(r) is an infinite element of the field of ends F).

(a) Show that I' is not contained inside any polygon (cf. Exercises 36.3, 42.20).

(b) Show that the exterior of I is not a segment-connected set (cf. Exercise 11.1).







Polyhedra

CHAPTER

olyhedra are solid figures bounded by plane poly-
gons. Most famous among these are the five regular,
or Platonic, solids, identified classically with the four
elements, earth, air, fire, water, and the whole uni-
verse. Euclid begins his Elements with the construc-
tion of an equilateral triangle (I.1) and ends in Book
XIII with the construction of these regular solids. It
= has been suggested that Euclid’s purpose in writing
sk o= vl the Elements was to fully elucidate the geometry be-
hind these five figures.

Euclid defines the tetrahedron, cube, octahedron, icosahedron, and dodeca-
hedron by the number and type of taces they have. He then constructs each one
inscribed in a sphere, and claims that only these five are possible. To make this
exact, we need to supply the hypothesis of convexity, not stated explicitly by
Euclid, and we need to prove that the figures so obtained are unique. In fact, it is
not immediate what the definition of' a regular polyhedron should be. We clarify
this at the end of Section 44 by defining a regular polyhedron to be convex, with
all of its faces congruent regular polygons, and with the same number of of faces
meeting at each vertex. Then we can prove there are only five of these, and that
in addition they have the further properties that all dihedral angles equal, they
can be inscribed in a sphere, and the group of symmetries is transitive on the
vertices.

To complete the proof we need Cauchy’s rigidity theorem (Section 45),
which says that a convex polyhedron is determined up to congruence by its
faces and their combinatorial arrangement.

435
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The theory developed to study the regular polyhedra also sutfices to classify
the semiregular, or Archimedean, solids, which are those solids whose faces are
all regular polygons and that have at each vertex the same kinds of faces in the
same cyclical order. There are two infinite series, the prisms and the antiprisms,
and thirteen others (Section 46).

We also begin the study of a more difficult problem, to classify all face-regular
polyhedra, which are those convex polyhedra having only regular polygons as
faces. We complete the analysis for those having only equilateral triangles as
faces in Section 45: There are five more besides the three regular solids with tri-
angular faces. For the general problem, we show that there are only finitely
many nonuniform face-regular polyhedra (46.3), but refer to Johnson (1966) for
the complete classification.

In Section 47 we explore another interaction of geometry and abstract alge-
bra by identifying the rotation groups of the regular polyhedra and showing that
they, along with the cyclic and dihedral groups, are the only finite subgroups of
the group of rotations of the sphere.

44 The Five Regular Solids

Our concern in this section will be first, to see what Euclid has done, and then to
formulate exact definitions and study the guestion of existence and uniqueness
of the five regular solids.
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Up to this point in this book we have considered almost exclusively plane
geometry. Here we move into solid, or three-dimensional, geometry. We will not
take the time to set up axiomatic foundations for this solid geometry; instead, we
let the reader make the straightforward extensions from Euclidean plane geom-
etry to Euclidean solid geometry. A brief review of Euclid's Elements, Book XI,
may be helpful. Or we may simply appeal to the ‘“‘Cartesian” three-space over
the real numbers IR, and use the methods of analytic geometry.

To start, let us review what we
know about regular polygons in the
plane. A triangle with three equal sides
(equilateral) also has three equal angles
(L5). Conversely, a triangle with three
equal angles (equiangular) has three
equal sides (1.6). For polygons with four
or more sides, however, having equal
sides does not imply equal angles, nor
conversely. A square is equilateral and
equiangular. A rectangle is equiangular
but not equilateral. A rhombus is equi-
lateral but not equiangular.

We define a regular polygon in the plane to be a polygon that is both equilat-
eral and equiangular.

Proposition 44.1

In the real Cartesian plane, for any n = 3, there exists a regular polygon of n sides
(n-gon) having a given segment as a side. Any two regular n-gons with a common
side are congruent. The vertices of the regular n-gon lie on a circle. For any two ver-
tices, there is a rotation of the n-gon to itself sending the first vertex to the second.

Proof For existence, just take a circle, and mark n equidistant points on the
circamference, subtending angles of 2r/n at the center. Expanding by a scale
factor will make the side equal to any given segment.

To prove uniqueness, suppose we are given a regular n-gon with side AB.
Bisect the equal angles at A, B, and let the angle bisectors meet at O. Then
O is equidistant from A and B. Continuing this construction at the other ver-
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tices, one sees easily that O is equidistant from all the vertices, so they lie on a
circle with center O. Thus any two regular n-gons with a common side will he
congruent.

A rotation through an angle of 2z/n at the center will send one vertex to
the next. Multiples of this rotation will send the first vertex to any other desired
Vertex.

Lo

Remark 44.1.1
We make these elementary observations about regular polygons explicit to em-
phasize the analogy with the three-dimensional case to follow.

Note that we used the real numbers to be able to divide the angle 2z into n
equal pieces. If we work in the Cartesian plane over the field of constructible
numbers, or it we ask for those regular polygons that are constructible using a
compass and marked ruler, not all values of n are possible. For detailed discus-
sion of these questions, see Sections 29, 30, 31.

Now we come to the definition of the regular solids. Euclid does not give a
general definition of a regular solid (we will do that later at the end of this sec-
tion). Instead, in the definitions of Book XI of the Elements, he defines each one
individually. A pyramid is a solid figure formed by joining a point to each of the
vertices of' a polygon in a plane not containing the point. Euclid does not use the
word tetrahedron, but we will, defining it to be a triangular pyramid formed of
four equilateral triangles. Euclid goes on to define a cube as a solid figure con-
tained by six equal squares, the octahedron and icosahedron as solid figures
bounded by 8 (resp. 20) equilateral triangles, and a dodecahedron as a figure
bounded by 12 regular pentagons.

Let us also fix some terminology that we will use in discussing solid figures.
A polyhedron is the surface of a solid figure bounded by plane polygons. When
two polygons meet, they must have an entire edge in common. These plane
polygons are the faces of the polyhedron. Their edges are the edges of the poly-
hedron, and their vertices are the vertices of the polyhedron. Where two faces
meet along an edge, we have a dihedral angle. This is the angle between two
rays, drawn in the two faces, from a point on the common edge, and both per-
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pendicular to that edge. At a vertex, the
angle in any face passing through that
vertex is called a face angle. The collec-
tion of all the faces at a vertex makes a
solid angle. The solid angle is not mea-
sured by a number, but we can speak
of one solid angle being congruent to an-
other if there is a rigid motion of the
space (plus possibly a reflection) mak- -

ing one coincide with the other close to \
the vertex.

If all the vertices of a polyhedron lie on a sphere, we will say that the poly-
hedron is inscribed in the sphere. If all the faces of a polyhedron are tangent to a
sphere, we will say that the polyhedron is circumscribed about the sphere.

Of course, defining something is no guarantee of its existence (think of a
unicorn, for example). So our first job is to construct examples of these figures.
Euclid does this in Book XIII, Propositions 13-17, by a very explicit and quite
complicated method. For brevity we will use simpler methods, due to Legendre
(1823), Appendix to Books VI, VII.

\

\

e

L] 1‘

Proposition 44.2
There exist tetrahedra, cubes, octahedra, icosahedrva, and dodecahedra having the
following properties:

(a) In each figure, all the dihedral angles are equal.

(b) The vertices of each figure lic on a sphere.

(c) For any two vertices, there is a rigid motion of the figure onto itself sending the
first vertex to the second.

Proof To make a tetrahedron, take an equilateral triangle of side 1, say. At its
center, erect a line perpendicular to the plane of the triangle. On this line, find a
point at distance 1 from one of the vertices of the triangle. This point will then
be at distance 1 from all three vertices, so the pyramid from this point will be a
tetrahedron.

The dihedral angles between the three new faces are obviously equal. But we
observe that the construction could also have been made starting from one of
these new faces, giving the same figure. Hence all the dihedral angles are equal.

Any four points not in a plane lie on a sphere, so the tetrahedron is inscribed
in a sphere. A rotation about an axis passing through one vertex and the center
of the opposite face will send any one vertex to another.

The cube we leave to the reader (Exercise 44.1).

To construct an octahedron, take a sphere of radius 1 and three mutually
perpendicular diameters. Join the six points where these diameters meet the
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sphere, making 8 equilateral triangles. These form an octahedron. Any pair of
adjacent vertices can be sent to any other by a succession of rotations about
these axes, and this implies also that the dihedral angles are all equal.

The construction of the icosahedron
is a little more complicated. We start
with a regular pentagon (say of side 1)
BCDEF in a plane. The pentagon lies on
a circle (44.1), so from the center of the
circle, erect a perpendicular to the
plane of the pentagon, and on that line
find a point A at distance 1 from B.
Then A will also be at distance 1 from
C,D,E,F. Joining A to the points
B,C,D,E,F, we obtain a pentagonal
pyramid with equilateral triangles as its
upper faces. By symmetry, the dihedral
angles between any two adjacent tri-
angles are the same.

Make another such congruent pentagonal pyramid starting with a pentagon
B'A'D'GH and label its top vertex C'. The dihedral angles in this new pyramid
are equal to those in the other. Hence, if we glue the triangle A’B'C’ onto the
triangle ABC, the points D and D' will coincide. We get a figure made of eight
equilateral triangles, with all dihedral angles equal.

Doing this once more, we get a convex figure of ten equilateral triangles with
ABC in the center, and having all its dihedral angles equal. Furthermore, as we
go around the six edges that form the outer boundary of this figure, the angle
between any two successive edges is equal to the interior angle of a regular
pentagon.

Now make another such figure of ten equilateral triangles. Because of the
equality of edge angles and dihedral angles, the two will fit together perfectly to
make an icosahedron with all dihedral angles equal.

The perpendiculars at the centers of any two adjacent faces will meet at a
point O equidistant from the four vertices bounding these two faces. Because the
dihedral angles are all equal, this construction propagates around the whole
surface to show that the point O is equidistant from all the vertices. Hence the
icosahedron is inscribed in a sphere with center O.

The construction we have given is clearly symmetric under a rotation of the
initial triangle ABC into itself. On the other hand, since all the dihedral angles
are equal, the construction could have been started anywhere. Thus there are
rotations sending any vertex to an adjacent vertex, and a succession of these will
be a rigid motion sending any vertex to any other vertex.

Lastly, to make a dodecahedron, take the icosahedron previously con-
structed. For each vertex of the icosahedron, join the five midpoints of the tri-
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angles meeting at that vertex. This makes a regular plane pentagon. The 12
pentagons thus constructed form a dodecahedron. Because of the symmetry of
the icosahedron, the relation between any two adjacent pentagons is the same,
so all the dihedral angles are equal.

The vertices of the dodecahedron are the midpoints of the faces of the icosa-
hedron. These are all equidistant from the center of the sphere containing the
icosahedron, so the vertices of the dodecahedron lie on a new smaller sphere,
which is inscribed in the icosahedron.

A rotation of the icosahedron about an axis passing through two opposite
vertices will send one triangle to an adjacent one, hence one vertex of the do-
decahedron to an adjacent one. Successions of these will make rigid motions
sending any vertex of the dodecahedron to any other.

Remark 44.2.1

In this proof we have made use of some rotations and rigid motions of the five
solids. We will study these rotations and rigid motions in more detail later, to-
gether with their group structure (Section 47).

Remark 44.2.2

All of the steps in the above constructions could be carried out with ruler and
compass in suitable planes. In particular, finding a point on a line at unit dis-
tance from a given point is just a matter of intersecting the line with a circle.
Hence these polyhedra are all constructible with Euclidean tools. In particular,
if we work in the real Cartesian three-space, their coordinates will lie in the field
K of constructible numbers. Put otherwise, these five solids exist in the Carte-
sian three-space over the field K.

Now we come to the question of uniqueness. Are the figures we have con-
structed the only polyhedra that satisty Euclid's definitions?

Euclid himself gives us an answer, stated as an unnumbered proposition just
after (XII11.18). He says that no other figure besides these five figures can be
constructed that is contained by equilateral and equiangular (i.e., regular) poly-
gons equal to each other.

His reasoning is as follows: If we use equilateral triangles, then we can put
together 3, 4, or 5 of them at one vertex, but 6 would lie flat. If we use squares,
we can put 3 at one vertex, but no more. If we use regular pentagons, again we
can put 3 at a vertex. If we try to use hexagons, three of them would lie flat, so
for a stronger reason we cannot use regular polygons of more sides.

These five cases, he says, correspond to the tetrahedron, octahedron, icosa-
hedron, cube, and dodecahedron, respectively; hence there are no others.

Unfortunately, Euclid’s conclusion is not correct as stated, because of some
missing implicit hypotheses, nor is his proof of the corrected result complete.

To make a correct statement, we need first to require that the figures in
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question be convex. This means that for any two points on the surface of the
polvhedron, the line segment between those points is entirely contained in the
solid figure hounded by the polyhedron. We use the word convex in the strict
sense, meaning also that no two faces lie in the same plane.

Example 44.2.3
Otherwise we could have a figure such as the “punched-in icosahedron.” Con-
sider one vertex A of an icosahedron, and let BCDEF be the pentagon formed by
the five adjacent vertices. Take off the pentagonal pyramid made by ABCDEF,
and replace it by the pentagonal pyramid A'BCDEF, where A’ is the reflection of
the point A in the plane of BCDEF. The point A’ is then inside the original ico-
sahedron, so the new figure is like an icosahedron elsewhere, but has a concav-
ity at A’. Think of the shape of a soccer ball at the moment it is being kicked, so
that the toe of the boot makes a concave spot in the ball. This is a figure
bounded by 20 equal equilateral triangles, but it is not congruent to the one we
constructed. So we must require convexity in order to have uniqueness.

Now Euclid's argument becomes correct insofar as it relates to what happens
at a single vertex:

Proposition 44.3
In a convex polyhedron all of whose faces are equal regular polygons, the only possi-
ble configurations at a single vertex are 3, 4, or 5 triangles, 3 squares, or 3 pentagons.

Proof The argument given above now works. Because of the convexity at a
vertex, the sum of the face angles at the vertex must be less than 2z (cf. Euclid
(XL.21)), and the listed five cases are the only possibilities.

But even with the hypothesis of convexity, Euclid’s original global statement
is still not correct. Think of two equal tetrahedra, glued together along one face.
This is a convex polyhedron (a triangular dipyramid) whose faces are 6 equilat-
eral triangles, but it is not in our list.

What we need to assume (and this also was probably implicit in Euclid's
thinking) is that the number of faces meeting at each vertex is the same. In the
triangular dipyramid, we have three faces meeting at the two farthest points,
and four faces meeting at each of the vertices along the glued face.

Now we can state a corrected version of Euclid’s classification.

Theorem 44.4
Any polyhedrvon that is

(a) bounded by equal regular polygons,
(b) convex,
(c) has the same number of faces at each vertex,
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is congruent (up to a scale factor) to one of the five constructed in (44.2). Further-
morve, these five all have the additional properties

(d) all dihedral angles are equal,

(e) the vertices lic on a sphere,

(f) for any two vertices, there is a rigid motion of the figure taking one to the other.
Lemma 44.5

If a vertex V of a polyhedron has three faces meeting it, with face angles o, f,y, then
the three dihedral angles between these faces are uniguely determined by o, f, 7. In
particular, if «, i, y are equal, the three dihedral angles will also be equal.

Proof Take points A, B,C equidistant

from V (say distance 1) on the three

edges meeting at V. Holding the triangle

AVB fixed, let the triangle AVC rotate A
around the line AV. As it does so, the

point C describes a circle on the unit

sphere with center V. Similarly, as BVC v

rotates around BV, the point C describes

another circle on the unit sphere cen-

tered at V. The point where these two

circles meet is C (or its reflection in the B
plane of AVB). Now it is clear that all

three dihedral angles are uniquely de-

termined by the three face angles of the

triangles at V.

Another way to see this is to intersect the three faces with the unit sphere
around V. We obtain a spherical triangle, which we call the vertex figure of the
polyhedron at the vertex V. The sides of this spherical triangle are portions of
great circles, subtending angles «, ff, y at the center of the sphere, so the lengths
of the sides are just o, f, y (in radians). Now use the fact that the three angles of a
spherical triangle are determined by the three sides (and in fact can be calcu-
lated explicitly by the formulae of spherical trigonometry). These three angles,
measured by their tangent lines, perpendicular to the radii of the sphere, are
nothing but the dihedral angles of the original polyhedron.

Remark 44.5.1

Of course, the conclusion of the lemma is false for four or more faces. If you
make an open figure of four equilateral triangles meeting at a single vertex, it is
quite flexible: You can decrease two opposite dihedral angles while increasing
the other two.




444 8. Polyhedra

Proof of Theorem Since we have assumed that the figure is convex and has the
same number of faces at each vertex, we can apply (44.3), and so have to con-
sider five cases.

Case 1 Three equilateral triangles at each vertex. Let A be one of the vertices,
and let B, C, D be the adjacent vertices. Because the sides AB, AC, AD, BC, BD, BC
are all equal, B,C, D form an equilateral triangle. The vertices B, C, D each have
two triangles already, so BCD makes the third, and the whole figure has just
these four equilateral triangles as faces. Because of (44.5), the dihedral angles
are the same as those in the tetrahedron constructed in (44.2), so the two tetra-
hedra are congruent up to scale factor. Properties (d), (), (f) follow from (44.2).

Case 2 Three squares at each vertex. By the lemma (44.5) the dihedral angles
are uniquely determined. In this case they are right angles. Starting at one ver-
tex, the three square faces fit on a cube. Continuing to adjacent vertices, the
faces of our solid must coincide with those of the cube; hence it is a cube.

Case 3 Three regular pentagons at a vertex. This is similar to Case 2. Because
the dihedral angles are uniquely determined, they must coincide with the dihe-
dral angles of the dodecahedron constructed in (44.2). Staring at one vertex and
working our way around, our figure must coincide with that dodecahedron, so
the extra properties (d), (e), (f) follow from (44.2).

Case 4 Four equilateral triangles at a
vertex. Here the lemma does not apply,
so we must work harder. First we make
a combinatorial argument to show that
our figure is composed of eight equilat-
eral triangles, in the same relative posi-
tions as the octahedron of (44.2).

Let A be one vertex. Since there are
four faces meeting at A, there are four
adjacent vertices B,C,D,E. Now, at B
we already have two of our faces and
three of our edges, so there must be an-
other vertex F such that BCF and BEF
are equilateral triangles. Now, at C we
have three of the required four faces: It
follows that CDF must be an equilateral
triangle forming the fourth face. Similarly, DEF is the fourth face at E, and now
the figure is complete. Thus our figure is bounded by eight equilateral triangles
in the same arrangement as the octahedron of (44.2).
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However, this does not yet prove that our figure is congruent to the one
constructed earlier. If you have built an octahedron or an icosahedron, you will
have noticed that it is quite flexible in the intermediate stages of construction,
and becomes rigid only when the last face is glued in position. So we are in-
clined to believe that the final shape is uniquely determined, but our model-
building experience does not make a mathematical proof.

To prove that our figure is congruent to the earlier one, we argue as follows.
Let A, F be opposite vertices of our figure. Then B,C,D,E are all equidistant
from A and F, so they must lie in the plane that bisects the segment AF. But they
are also equidistant from A, so they lie on a sphere with center A that intersects
that plane in a circle. So B, C, D, E lie on a circle. But they are also equidistant
from each other, in order, so they form a square. Let O be the center of the
square. Then the segments AF, BD,CE all pass through O, and are mutually
perpendicular. If an edge of our figure has length 1, then O is at distance \/E/Z
from B,C, D, E, and one then sees easily that O is also at distance \/5/2 from A
and F. Thus A, B,C, D, E, F lie on a sphere with center O, and we have recovered
the construction of (44.2). The properties (d), (e), (f) follow.

Case 5 Five equilateral triangles at each vertex. First we make a combinatorial
argument to show that a figure made of triangles having five meeting at each
vertex has 12 vertices and 20 faces, in the same arrangement as the icosahedron
of (44.2). This step is left to reader (Exercise 44.5).

Now we have to show that a convex figure made of 20 equilateral triangles in
the same arrangement as the icosahedron of (44.2) is congruent to that one. In
that case the extra properties (d), (e), (f) will follow from (44.2). This is again
the question of rigidity we encountered in Case 4, but for the icosahedron we do
not know an elementary argument. We must refer to Cauchy's rigidity theorem
(45.5) in the next section to complete the proof.

Remark 44.5.2

Even when this theorem is completely proved, there still remains another ques-
tion: Are the five figures constructed in (44.2) the only convex figures satisfying
Euclid's definitions of tetrahedron, cube, octahedron, icosahedron, dodecahe-
dron? This is a slightly different question, because instead of assuming (c) of
(44.4) that each vertex has the same number of faces, we assume only that the
total number of faces is given. For the tetrahedron it is obvious. For the cube and
the dodecahedron, since it is possible only to have three faces at a vertex, the
result follows from (44.4). But for the case of a convex figure made of 8 or 20
equilateral triangles, it is not obvious because there might be a different way of
arranging the triangles with different numbers of them at different vertices. The
result is nevertheless true, as we will see later when we classify convex poly-
hedra whose faces are all equilateral triangles (45.6.1).
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Definition

We can now define a regular polyhedron to he a convex polyhedron whose faces
are all equal regular polygons and having the same number of faces meeting at
each vertex. It follows from (44.4) that the only regular polyhedra are the five
Platonic solids constructed in (44.2), and that they all have the extra properties
(d), (e), (f) of (44.4). Alternatively, one could define a regular polvhedron to be a
convex polyhedron all of whose faces are equal regular polygons and that sat-
isfies any one of the properties (d), (e), (f) of (44.4). See Exercise 44.6.

Exercises

In these exercises, the words tetrahedron, cube, octahedron, dodecahedron, icosahedron
refer to the regular polyhedra with 4, 6, 8, 12, 20 faces respectively.

441 Verity the existence of a cube having all the properties of Proposition 44.2.

44.2 If you join the centers of the faces of a cube by lines, show that this makes an octa-
hedron. Conversely, show that joining the centers of the faces of an octahedron
makes a cube. We say that the cube and the octahedron are dual solids.

443 Take a tetrahedron of side length 1, and around each vertex cut off a smaller tetra-
hedron of side length 1. Show that what remains is an octahedron. Conclude that the
dihedral angle of an octahedron and the dihedral angle of a tetrahedron are supple-
mentary angles.

44.4 Make a model of each of the five regular solids. There are many ways to do this, and
I would not want to limit your creative ingenuity, but 1 will tell you my tavorite
method. Lay out the faces on a flat piece of cardboard, with as many attached to
each other as possible. Part of the fun is figuring out how to lay them out, but you
can skip this step by looking in almost any geometry book (except this one) for a
diagram. Then cut out the figure, and score with a knife the edges to be folded. Fold
up and join edges of the solid figure by making a small double tab of cardboard to be
glued inside the adjoining edges of the two faces. How to glue down the last face is
another interesting problem I leave to you. When it is complete, you can paint the
entire solid with different colors to emphasize the symmetries.

Another good medium for making quick models and experimenting is jelly beans
(the small kind) and toothpicks. And when you are done, you can eat the jelly
beans. One student of mine even made tetrahedra out of gingerbread triangles,
glued together with cake frosting. That time the whole class enjoyed the models.

445 Show that a convex polyhedron whose faces are all triangles (not necessarily equi-
lateral) having five faces meeting at each vertex must have 12 vertices and 20 faces.

446 In Theorem 44.4, if we assume (a) and (b), but instead of assuming (c), we assume
any one of (d), (e), or (f), show that (¢) and hence the rest of the theorem follows.
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Plate XVI. A page from Kepler's Harmonices Mundi (1619) showing how one regular poly-
hedron may be inscribed in another. He calls the cube and the dodecahedron male, and
the octahedron and the icosahedron female, since the latter can be inscribed in the for-
mer, while the tetrahedron is androgynous, since it is inscribed in itself. Reprinted cour-
tesy of the Bancroft Library of the University of California at Berkeley.
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447

44.8

44.9

Take three 3 x 5 cards and arrange them so that they are in three mutually perpen-
dicular planes, they all have the same center, and each one passes through a 3" slit
in one of the others. Then the 12 corners of these three cards approximate the ver-
tices of an icosahedron. Prove this as follows: Assume that the ratio of the sides of
the cards is 5 (1 + v/5) & 1.618 instead of its actual value 3. Compute the coordinates
of the twelve corners in a Cartesian 3-space whose axes run through the cards, and
show that the distance between any two adjacent vertices is the same. (Use symme-

try to limit your calculations to two, instead of 30.)

Let d be the diameter of a sphere, and let s be the side of an inscribed regular poly-

hedron. Show that d and s are related as follows:
a) For a tetrahedron, d* = 2s%.

2

(

(b) For an octahedron, d? = 252,
(¢) For a cube, d* = 3s°.

(d) For an icosahedron, d* =1 (5+ V5)s?.

(¢) For a dodecahedron, d* = 2(3 + NG

Let o be the dihedral angle of a regular polyhedron. Verity that:
a) For a tetrahedron, cosa = 1.
b) For an octahedron, coso = —

1
L

(
(
(c) For a cube, cosa = 0.
(d) For an icosahedron, coso = —(1/5/3), sino = 2
(

)
¢) For a dodecahedron, coso = —(v/5/5), tana = —2.

45 FEuler’s and Cauchy’s Theorems

To complete the classification of the regular solids, and for use in studying other
classes of solids, we prove here two results of a more general nature about poly-
hedra. Euler's theorem gives a relation between the number of vertices, edges,
faces of a convex polyvhedron. This is a special case of the so-called Euler
characteristic of a surface studied in topology. Cauchy's rigidity theorem tells us
that if two convex polyhedra have congruent faces, similarly arranged, then
they are congruent as a whole. As an application we will classify all convex poly-

and

hedra made with only equilateral triangles.

Theorem 45.1 (Euler)

Given a convex polyhedron, let v be the number of vertices, let € be the number of

edges, and let f be the number of faces. Then

v—e+f=2.
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Proof There are many proofs of this

theorem, but here is one that is particu-

larly easy to visualize. Since the poly-

hedron is convex, if you place your eve

in the center of one face, you can see all

the other faces with no overlap. It you

pull your eye back just a little, you will

also be able to see the edges of the face

you are looking through. Then we proj-

ect this image onto a plane. This dis-

torts angles and distances, but the edges

remain straight, so we obtain in the

plane a figure made of various points

and line segments connecting them,

and the faces of the original polyhedron correspond to the plane polygons in this
figure, plus one more face (the one you were looking through) that corresponds
to the area of the plane outside the figure. Here, for example, is the plane figure
you would get from an octahedron.

Now we perform two kinds of operations on this figure.

(a) Choose an edge that separates two faces, or that separates one face from
the area outside the figure, and remove that edge. This decreases the number of
edges by one, and also decreases the number of faces by one, since two faces are
now joined together. So the expression v — ¢ + fis unchanged.

A

(b) If at some point in the procedure
there is a vertex that has only one edge
coming out of it, remove that vertex and a
that edge.This decreases both v and ¢ by
one, so again the expression v — e+ f is
unchanged. For example, after remov-
ing edges a,b,c in the diagram above,
we are left with a vertex A with just one
edge d.

Let us think about what happens. We do step (a) as many times as possible.
If step (a) is no longer possible, then there are no loops in the remaining graph
of vertices and edges, so there must be some ends to the graph (since the graph
is finite), and then we can do step (b). If there are no edges at all remaining,
then the figure must be reduced to points only. But the original figure is con-
nected, and it remains connected by performing step (a) or (b), so it is just one
point. Then v =1, e=0, f=1, so v — e+ f= 2. Since the expression v —e+f
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was unchanged by all the steps, the original v — e+ f also is equal to 2, as
required.

Remark 45.1.1

The hypothesis “convex” in this theorem is stronger than necessary. For exam-
ple, the result is still true for the punched-in icosahedron {44.2.3) even though it
is not convex. The correct hypothesis for this theorem is that the polyhedron
should be simply connected. However, to explain properly what this means, and
to prove the theorem in this more general setting, we must refer the reader to a
book on algebraic topology.

Euler's theorem has a very useful consequence relating to the tace angles of
a polyhedron. At any vertex of a convex polyhedron, the sum of the face angles
of the faces at that vertex must be less than 2z, as we have seen earlier (X1.21).
So we define the defect dy at the vertex V to be 2r minus the sum of the face
angles at V. The defect dy is always positive.

Corollary 45.2 (Descartes)
In a convex polyhedron, the sum of the defects at all the vertices is equal to 4.

Proof We compute as follows:
Z()‘lv = Z(ZR’ - Z(fat:e angles at V))
v v
= 2nv — Z(all face angles),
where v is the number of vertices. Now the sum of the face angles of an n-sided
polygon is (n — 2)n. For each n, let f, be the number of faces having n sides.

Then the total number of faces is f= }_ f,, and the number of edges ¢ is just
%Z nf,. Combining these observations with the above, we have

Z&V = 2y - Z(n - 2)mfn

A4 r
= va—nZnﬁ? +2:1'Z fn
i n

=2n(v—e+f) = 4nm,
as required.

Remark 45.2.1

This result is a powerful tool in that it limits the possible number of vertices
with a particular configuration of faces in a convex polyhedron. We will see ap-
plications in several results below: (45.6), (46.3), (46.4.1).

Now we come to Cauchy's rigidity theorem. This was Cauchy’s first mathe-
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matical accomplishment, before he went on to lay the foundations of a rigorous
theory of convergence (Cauchy sequences) and develop the theory of functions
of a complex variable (Cauchy-Riemann equations, Cauchy integral formula,
etc.). A gap in the first lemma was discovered and repaired by Steinitz one hun-
dred years later.

The problem is this. Suppose we have two convex polyhedra, made of con-
gruent faces, similarly arranged. More precisely, this means we are given a one-
to-one correspondence ¢ from the set of faces Fi, ..., Fy of the first polyhedron to
the set of faces F{,. .. ,F:- of the second polyhedron, so that for each i, F; is con-
gruent to ¢(F;), and furthermore, ¢ extends to one-to-one correspondences of
vertices and edges preserving all incidence relations. Then we wish to conclude
that the two polyhedra are congruent. Note that this formulation allows mirror
images, so that congruence means rigid motion in space followed possibly by
reflection in a plane.

Cauchy's idea is to study how the dihedral angles compare along corre-
sponding edges. If all the dihedral angles are the same, then we can build the
two polyhedra step by step into congruent figures. On the other hand, if the di-
hedral angles change, then we will track their increase or decrease around each
vertex and eventually use Euler's theorem to make a contradiction. To study
what happens at a single vertex, we intersect the faces of the polyhedron with a
small sphere around the vertex. This produces a spherical polygon whose inte-
rior angles are precisely the dihedral angles of the original polyhedron. We call
it the vertex figure at the vertex V. This leads us to the study of polygons with
changing angles, which is the first lemma.

Lemma 45.3 (Steinitz)

Suppose given in the plane two convex polygons A1A; -+ A, and BBy - - - By, with all
sides equal except possibly the last: AjAi1 = BiBiy for all i=1,2,...,n— 1. Sup-
pose also that the angles of the first polygon are less than ov equal to the angles of the
second, [ A; </ By, for i=2,...,n—1, with at least one strict inequality. Then
A1A, < B]Bn.

Proof We proceed by induction on n.
Case 1 For n = 3 it is elementary. In fact this is Euclid (1.24).

Case 2 Suppose that n=4 and for
some i that / A; = / B;. Then the trian-
gle A;_;A;A, ., is congruent to the tri-
angle Bi_1BiBi;1. So Ai_1Ain = BiL1Bin,
and the result follows by applying the
induction hypothesis to the new poly-
gons of n — 1 vertices obtained by omit-
ting A; and B;.
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Case 3 Suppose that n = 4 and all the B angles are strictly bigger than the A
angles. Construct a point A} such that A1A; = A1A; and / A{AA3 = /. B, We
compare A; --- A, to AJA;- - A, and then the latter to B; - -+ B,,. In the first com-
parison, / Ay =/ Az, s0 A1A; < AlA; by Case 2. In the second comparison,
/L Ay = [ By, so AlA; < B|B; again by Case 2, and we are done.

But wait! There is a snag. If the new polygon AjA;--- A, is not convex, we
cannot apply the earlier cases, and the proof fails.

Case 4 1If this happens, then there
must be a point A] intermediate be-
tween A; and A}, for which AJA; =
A1Ay, and A7, Ay, Ay are collinear.

Then we first compare A;---A, to
AfAy-+ A, and obtain AjA, < ATA, by
Case 2. Next we compare the polygon
AlAy--- A,y to BiBy - - By, and obtain
AJA,1 < B1By,_1 by the induction hy-
pothesis. On the other hand, since
Al Ay, Ay are collinear, we have
ATA, = AJA, 1 — Ay Ay, Putting these
together, we get

A1Ay < ATA,
=A{An 1 — A A,
< BiBy—1 — Bu-1By
< BBy,

where the last inequality is just the triangle inequality (1.20). Thus the proof is
complete.

Remark 45.3.1

In fact, what we need for Cauchy's theorem is not this lemma for plane poly-
gons, but the analogous result for polygons on the surface of a sphere. The ex-
tension to spherical polygons is not too difficult because the proof uses results
from only the first part of Euclid, Book I, before the introduction of the parallel
postulate. The verification that the needed results hold in spherical geometry is
left to the reader (Exercises 45.3-45.8).

Lemma 45.4
Let Ay -+ A, and By - - - B, be two convex polygons in the plane or on the sphere, with
corrvesponding sides equal: AjA; ., = BBy fori=1,....n (interpreting n+ 1 = 1).

For each i, mark the vertex A; with + if £ A; < [ B;, with — if /. A; > /By, or with no
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mark if the angles are equal. Then either all corresponding angles are equal, or, as we
make a civcuit of the first polygon, ignoring unmarked vertices, the sign must change
at least four times.

)

Proof Of course, the number of -
changes of sign is even, so it there were
some, but less than four, there would be

exactly two changes of sign. In that case A
one could draw a diagonal A;A; cutting 4
the polygon into two convex polygons, A"

one of which contains only — vertices, +

and the other only + vertices. Applying

the previous lemma to the — side, we

obtain A:A; > BiB;. Applying it to the + 4

side gives A;A; < B;Bj, a contradiction. +

Theorem 45.5 (Cauchy's Rigidity Theorem)

Suppose we are given two convex polyhedra and a one-to-one map ¢ from the set of
faces of one to the other, so that corresponding faces are congruent, and are similarly
arranged (as described above). Then the two polyhedra ave congruent.

Proof For each edge of the first polyhedron, we mark it +, —, or no mark, ac-
cording as its dihedral angle is less than, greater than, or equal to the corre-
sponding dihedral angle of the second polyhedron. At each vertex we intersect
the polyhedron with a small sphere, and look at the resulting vertex figure. This
is a convex spherical polygon, and its vertices inherit markings + or — from the
edges, which by construction correspond to the increase or decrease of this
polygon angle as compared to the vertex figure of the second polyhedron. We
conclude from the lemma (45.4) that for each vertex, if we make a circuit of the
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edges meeting that vertex, either they are all unmarked, or there are at least 4
changes of sign. We will arrive at a contradiction by counting the total number
of changes of sign in two different ways.

Case 1 Suppose that all edges are marked + or —, in other words, all the dihe-
dral angles are changing. Let t denote the sum over all the vertices of the num-
ber of changes of sign of edges around that vertex. Then by the lemma (45.4)
clearly t = 4v, where v is the number of vertices.

On the other hand, let us count by faces. On a triangular face, two adjacent
edges must have the same sign, so that face can contribute at most two changes
of sign to its three vertices. Similarly, a face of n sides can contribute at most n
changes of sign if n is even, or n — 1 if n is odd. In particular,

t£2f3+zn ",

n=d

where f,, denotes the number of faces of n sides. Putting together the two in-
equalities for t gives

4u < 2f; + ann.

nz=4

Now we use Euler's theorem, which can be written v = ¢ — f+ 2, and substi-
tute ¢ = 3> nf, and f= 3" f,. This gives

2) (n=2)fu+8<2fs+ Y nfu

nz=4

or

Z(n—4)ﬁ.. +8<0,

nz=4

which is impossible, because the terms in the sum are all nonnegative.

Case 2 Now suppose there are some marked and some unmarked edges. Of
course, if no edges are marked, all the dihedral angles are equal, and the two
polyhedra are congruent. We will imitate the previous proof using only those
vertices and edges that are marked. We call this a net. The vertices of the net are
those vertices of the polyhedron that have a marked edge coming out of them.
The edges of the net are the marked edges of the polyhedron. A net-face of the
net is any maximal union of faces of the polyhedron that are not separated by
edges of the net. A net-face is no longer a plane polygon, but it is a connected
surface bounded by edges of the net.

Now we repeat the previous argument using only the vertices, edges, and
net-faces of the net. Denote the numbers of these by v',e’, f'. The argument is
all the same, except for the application of Euler's theorem, which does not apply
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as stated, because a net may not be a polyhedron. Nevertheless, we can apply
the proof of Euler's theorem (45.1) to the net, and the only difference is that the
plane figure of points and lines may not be connected. At the end of the proof,
there may be more than one point, so we find that v’ — ¢’ + ' = 2. With this
inequality, the argument of Case 1 still works, so we have a contradiction.

The only remaining possibility is that all the dihedral angles are equal, so the
two polyhedra are congruent.

Remark 45.5.1
This result is false without the hypothesis of convexity. See Cromwell (1997),
Chapter 6, for an interesting discussion of nonconvex flexible polyhedra.

As an application of the theorems of this section, we will classify all convex
polyhedra that can be formed using only equilateral triangles (called deltahedra
by some authors).

Theorem 45.6

There are exactly eight convex polyhedra all of whese faces are equilateral triangles.
Each one is uniquely determined up to congruence, once the length of an edge is
specified.

Proof Qur strategy is this. Since the faces are all equilateral triangles, we know
from (44.3) that at each vertex there must be 3, 4, or 5 triangles. Since the tri-
angles are equilateral, the corresponding defect at such a vertex will be , 27/3,
or n/3. Let a be the number of vertices with 3 triangles, b the number with 4
triangles, and ¢ the number with 5 triangles. Then a, b,¢ are nonnegative in-
tegers, and according to Descartes's theorem (45.2) we have

2 1
na + —nh + —me = 4m,
3 3 '
or

2 1
a+-b+-c=4.
3 3

This equation has only a finite number of solutions in nonnegative integers.
So we will list all possible solutions, then discuss existence or nonexistence of
the corresponding polyhedron until we have a complete classification. See Table
1 for the list of possible a, b, c.

As a first step, we can fill in the tetrahedron, octahedron, and icosahedron,
which we know to exist. Next let us show that some combinations of a, b,c are
impossible. I claim that we cannot have a 3-face vertex adjacent to a 5-face ver-
tex. Indeed, at a three-face vertex, the dihedral angles are uniquely determined
(44.5) and are those of a tetrahedron. So imagine a tetrahedron sitting on one
face of an octahedron. The joined vertices are then 5-face vertices, and two of
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Table 1. Convex polyhedra with equilateral triangular faces.

a |b|c Name or Note v € f
4 10 0 | tetrahedron 4 6 4
3 11| 1| @

310 3|

213 0 | triangular dipyramid 5 9 6
202 2|

201 4@

200 6| Q)

114 1| @®

113 3|@

1 2] 5| @®

111 7@

110 9| @

0|6 0 | octahedron 6 | 12 8
0|5 2 | pentagonal dipyramid 7 115 | 10
0|4 4 | snub disphenoid 8 | 18 | 12
0|3 6 | tricapped triangular prism 9 |21 | 14
0|2 8 | bicapped square antiprism | 10 | 24 | 16
0110 |@®

0 |0 |12 | icosahedron 12 | 30 | 20

the faces of the octahedron are in the same planes as faces of the tetrahedron
(Exercise 44.3), so the figure is not convex in our strict sense. If we push one of
the faces of the 5-vertex inward, to be no longer in the same plane as the face of
the tetrahedron, the other one will be forced outward, so the figure will not be
convex. Thus we cannot have a 3-vertex adjacent to a 5-vertex. Consequently, if
a>=0,thena+b >4, and it ¢ = 0, then b + ¢ = 6. This rules out all those cases
indicated by note (1).

Next, suppose there is just one 3-vertex. The 3 adjacent vertices must be 4-
vertices by the above argument, and then the figure closes at 6 faces to make a
triangular dipyramid, that is, two tetrahedra glued together along one face. This
gives the existence of the dipyramid (a, b,c) = (2, 3,0), and shows the impossi-
bility of a = 1. This is note (2).

Now let us consider existence. For (0,5, 2) we have the pentagonal dipyramid,
which is two pentagonal pyramids glued along their pentagonal face. For (0,3, 6)
we have the tricapped triangular prism, which is formed as follows. Take a trian-
gular prism—that is, two equilateral triangles in parallel planes, joined by three
squares—and onto each square face glue a square pyramid. For (0,2,8) we have
the bicapped square antiprism. A square antiprism is made of two squares, in par-
allel planes, but with their axes tilted at 45° angles to each other, and joined by 8
equilateral triangles. On each square face, glue a square pyramid.
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We can show that the case (a,b,c) = (0,1,10) is impossible by an argument
similar to note (2) above. If there were only one 4-vertex, and all the rest 5
vertices, the figure would grow from the 4-vertex the same as the bhicapped
square antiprism, and this would force another 4-vertex on the other side. This

is note (3). Al

We have saved the case (a,b,c) =
(0,4,4) for last, since its existence is £
less elementary than the others. We call

c
it the snub disphenoid after Johnson
(1966). It has also been called a triangu- ;
lar dodecahedron, or Siamese dodeca-
hedron. To show the existence of this
4°)

figure, take a triangular dipyramid, and
cut it open along two of its edges, from
top to bottom. Now push the top and
bottom vertices A, B toward each other,
forcing apart the split vertex C,D, and
keeping EF fixed. If you continue this
process all the way, eventually the fig-
ure will lie flat, with A on B and C, D at
the outside corners.

Somewhere in between, there is a
point where the distance of AB and CD
are equal. Then the angles of the non-
planar quadrilateral ACBD are all equal.
So you can take a second one of these
figures and glue the two together along
ACBD, with the roles of AB, CD re-
versed, and obtain the desired figure.

Note that all the other polyhedra in this list are easily seen to be con-
structible by ruler and compass constructions. For the snub disphenoid, our ex-
istence proof used the intermediate value theorem in the real numbers to argue
that as AB decreases and CD increases, there is a point where they become
equal. In fact, this figure is not constructible —it requires the solution of a cubic
equation to find its dimensions (Exercise 45.10).

Now we have ruled out the impossible cases, and have shown existence for
the remaining cases. To show uniqueness, observe that for each total number of
faces, there is only one triple (a,b,¢) possible, and this determines the arrange-
ment of the faces. So by Cauchy's theorem (45.5) we conclude that the figures
are unique up to congruence, after fixing a scale factor.
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Remark 45.6.1

This also settles a question raised earlier (44.5.2), namely, the only convex fig-
ures that can be made with 8 or 20 equilateral triangles are the octahedron and
the icosahedron, thus vindicating Euclid’s definitions.

Exercises

45.1

45.2

45.3

45.4

For each of the five regular solids:
(a) Calculate the number of vertices, edges, and faces, and verity Euler’s theorem.
(b) Calculate the defect at a vertex and verify Descartes's theorem (Corollary 45.2).

Make an example to show that the result of Lemma 45.3 may fail if the polygons
are not convex.

Spherical Geometry

In the following exercises we develop some elementary results of spherical geom-
etry that are needed for the spherical form of Steinitz’s lemma. We fix a sphere (of
radius 1 for convenience) in Euclidean three-space R¥. The points of the spherical
geometry are points on the surface of the sphere. The lines are great circles on the
sphere, that is, circles lying in a plane passing through the center of the sphere. A
circle will be the set of points equidistant from a given point, or equivalently, the
intersection of any plane with the sphere. We measure angles between lines and
circles by the angle between their tangent lines in 3-space. We measure length of a
line segment by the angle (in radians) that it subtends at the center of the sphere.
So a complete great circle has length 2z, A line from the north pole to the equator
has length 7/2.

We have seen earlier (Exercise 34.13) that this geometry does not satisfy Hilbert's
axioms. However, we will see in these exercises that most of the results of the first
part of Euclid's Book I still hold, with suitable modifications. When we speak of a
triangle or a polygon we will always assume that it lies in a single hemisphere. In
particular, the length of any side must be less than . If we restrict our attention to
one hemisphere, then the concepts of betweenness function well, and we can
speak of the inside of a triangle, or of a convex polygon. To any of Euclid’s propo-
sitions we will prefix “s” to denote the corresponding statement in spherical geom-
etry. Thus for example, (sl.4) is the SAS theorem for spherical triangles.

Show that the construction of an equilateral triangle (sI.1) works for a line segment
AB of length less than 2r/3, but fails it 2n/3 < AB < n. What happens if the length
of AB is exactly 2n/3?

Verify that (s1.2)—(sl.15) are all true, and note carefully when a different proot is
necessary. Feel free to use the existence of rigid motions to prove congruences (cf.
Exercise 34.13).
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45.5

45.6

45.7

45.8

45.9
45.10

45.11

46

Give examples to show that (s1.16) and (s1.17) are false. What goes wrong with the
proof of (1.16)7

Euclid uses (1.16) to prove (1.18), (1.19), and (1.20). This will not work in the spher-
ical case. Instead, use (X1.20) to prove (s1.20). Then use (s1.20) to prove (s1.19), and
finally use (s1.19) to prove (s1.18) by contradiction.

Coming to (s1.22), the construction of a triangle from three given sides, recall that
in our definition of a spherical triangle, we assume that it is contained ( properly) in
a single hemisphere. Show then that the sum of the sides of any triangle must be
less than 2m, and this condition must be added to the condition of (1.22) to make the
construction possible.

Show that (s1.23)-(s1.26) are all ok, using the results proved above. In particular,
this gives us (s1.24) used in the Steinitz lemma.

Make models of each of the new polyhedra in Table 1.

In the construction of the snub dis-
phenoid described in the proot of
Theorem 456, let H be the point
where AB meets the plane of CEFD.
Let @ be the angle EHF, and let
x = cosl.

(a) Show that for AB = CD, x satisfies
an irreducible cubic equation with
integer coeflicients (taking the edge
length EF to be 1). Hence the dis-
phenoid is not constructible by ruler
and compass.

(b) Does this cubic equation require a real square root or an angle trisection for its
solution (cf. Section 31)?

(c) Solve the equation above and use it to get an approximate value for d = AB =
CD. Answer: d ~ 1.28917.

(d) Compute the dihedral angle along the edge EF. Answer: 96°11'54".
Imitating the constructions used to make the solids in Table 1,
(a) show that a square dipyramid is the same as an octahedron, and

(b) a bicapped pentagonal antiprism is the same as an icosahedron.

Semiregular and Face-Regular Polyhedra

After discussing the regular polyhedra and the polyhedra made from equilateral
triangles, it is natural to ask what other convex polyhedra can be made using
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only regular polygons as faces. We call these face-regular polyhedra. Among
these the most symmetric are the semiregular, or Archimedean, solids. We define
these to be convex polyhedra having only regular polygons as faces, and uniform
in the sense that each vertex has the same number of the same kinds of taces, in
the same cyclic order at each vertex. (This terminology is not universal. Some
authors use the word “uniform” to denote the stronger condition that there is a
rigid motion sending any vertex to any other—cf. (46.2) below.)

We can describe a semiregular solid by giving the configuration of faces at a
single vertex. The symbol (a,...,a;) will describe a vertex having an a;-sided
regular polygon, an a;-sided polygon, ..., and an a;-sided polygon, in that order.
So the symbol (3, 3,3) would mean three equilateral triangles at each vertex—
this is the regular tetrahedron. The symbol (3,4, 3,4) describes a solid in which
each vertex has two equilateral triangles and two squares, alternating with each
other as you make a circuit around the
vertex. An example of this is the cu-
boctahedron. Take a cube and mark the
middle of each edge. Join the markings
on each face to make a smaller square.
Then cut oft each corner of the cube
along the lines. This leaves a solid with
6 squares and 8 equilateral triangles
having the configuration (3,4,3,4) at
each vertex.

Another way to cut down a regular
solid is illustrated by the truncated tetra-
hedron. Take a tetrahedron and mark
the thirds of each edge. Join the mark-
ings on each face to make a regular
hexagon. Cut off the vertices of the tet-
rahedron along the lines. This leaves a
fisure with four regular hexagons and
four equilateral triangles as faces, and the arrangement (3, 6, 6) at each vertex.

By these methods you can make many more semiregular solids. Try it.

Another construction is to take two congruent regular n-gons, for any n = 3,
in parallel planes, lined up with each other, and join corresponding edges with
squares. This makes an n-sided prism. Its symbol is (4,4,n). When n =4 it is a
cube.

If you again take two regular n-gons in parallel planes, but rotate one by n/n,
s0 that the vertices of one are lined up with the edges of the other, and join them
by equilateral triangles (adjusting the height as needed), you get an n-sided anti-
prism. For n = 3 this is an octahedron.

Now we will see that aside from the infinite families of prisms and anti-
prisms, there is only a finite number of semiregular solids. They are often called
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Archimedean solids, because they were studied in a lost book of Archimedes (cf.
Pappus (1876), Book V, Sections 19 ff). They were rediscovered and classified by
Kepler.

Theorem 46.1
Aside from the five regular polyhedra and the two infinite families of prisms and
antiprisms, there arve just thirteen (and one variant) other semiregular polyhedra.

Proof Our strategy is similar to that used in classifying the convex figures made
of triangles. First we will use numerical criteria to limit the possible behavior at
a vertex, and then we will discuss existence and uniqueness of the correspond-
ing solids.

Since the solids are convex, the sum of the face angles at a vertex must be
less than 2z (cf. proof of (44.3)). The face angle of a regular n-gon is (n — 2) /nx,
so at a vertex (aj, ...,a;) we must have

Zaia__zrf < 2,

which gives

.
ZE_> k— 2.

-1

This is our main numerical restriction on possible vertex configurations.

Case 1 Each vertex has three faces, say (a,b,¢). Then our inequality is

111>1
¢ 2

a b

If a, b, ¢ are all equal, then a = 3,4, or 5. These correspond to regular solids,
as we have seen before.

If at least two of a,b,c are different, say a $# b, then as we go around the
edges of a ctace, the adjacent faces must alternate between a and b. It follows
that ¢ is an even number. This restriction, together with our inequality, limits
the possible triples (a, b,¢) to those shown in Table 2 (Exercise 46.1).

Case 2 Each vertex has four faces, say (a, b, ¢,d). In this case our inequality is

! + ! + ! + ! =1
a b ¢ d '
If a = 3, there is another limitation. Look at what happens around a triangle. At
each vertex of the triangle, b and d are adjacent faces, sharing an edge with the
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Table 2. The semiregular polyhedra.

Vertex

Figure Name v fi | fa| f5 | Other f,

(3,3,3) tetrahedron 4| 4

(4,4,4) cube 8 6

(5,5,5) dodecahedron 20 12

(4,4,1n) n-sided prism, n = 3, n # 4 2n n fa=2

(3,6,6) truncated tetrahedron 12 | 4 fe=4

(4,6,6) truncated octahedron 24 6 fe=8

(5,6,6) truncated icosahedron 60 12 | f=20

(3,8,8) truncated cube 24| 8 fa=86

(3,10,10) truncated dodecahedron 60 | 20 fio=12

(4,6,8) truncated cuboctahedron 48 12 fe=8, fa=6

(4,6,10) truncated icosidodecahedron 120 30 fg =20, fip =12

(3,3,3,3) octahedron 6| 8

(3,3,3,n) n-faced antiprism n = 4 2n | 2n fa=2

(3,4,3,4) cuboctahedron 12| 8| 6

(3,5,3,5) icosidodecahedron 30 |20 12
rhombicuboctahedron

(3,4,4,4) { pseudorhombicuboctahedron } 24| 8118

(3,4,5,4) rhombicosidodecahedron GO |20 |30 |12

(3,3,3,3,3) |icosahedron 12 | 20

(3,3,3,3, snub cube 24 |32 | 6

(3,3,3,3,5) | snub dodecahedron G0 | 80 12

triangle, while ¢ is opposite the triangle at each vertex. It follows that b = d. This
restriction, together with the inequality, limits possible vertex types to those in
Table 2 {Exercise 46.2).

Case 3 Each vertex has five faces. Our inequality is

2

2

— q
and this already limits us to the three cases shown. As we cannot have six or
more faces at a vertex, these are all the possibilities (Exercise 46.3).

Next we come to the questions of existence and uniqueness. Once we have
fixed a vertex arrangement, one can check easily that the global arrangement of
the polyhedron is uniquely determined (with one exception noted below), so
uniqueness will follow from Cauchy’s theorem (45.5).

As for existence, all except the last two can be constructed using Euclidean
tools, by methods similar to those suggested above, so I will leave to you the
pleasure of figuring out the details and building models of as many as you like.
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One word about the rhombicubocta- .
hedron, which is a special case. This - -
solid can be made as follows. Take a - o
cube, and in the middle of each face
draw a smaller square with edges paral-
lel to the edges of the cube. Now re-
move the edges of the cube, and join
squares in adjacent faces by squares [ f

(after adjusting the size of the smaller i | )
squares appropriately). The corners of ) | |
the original cube are then replaced by o
equilateral triangles, and we obtain the ,l |- -
rhombicuboctahedron. It is a sort of T T T s s e
sphere wrapped up around the equator with a ribbon of 8 squares, and two other
similar ribbons in mutually perpendicular north-south axes. Or you can think of
it as an octagonal prism containing the equator, with caps on the top and bot-
tom. If you rotate the top cap by 45°, you get a new figure, which is still semi-
regular with vertex (3,4,4,4), but not congruent to the original figure. This is
the pseudorhombicuboctahedron, discovered only in 1930 (see Ball (1940), p. 137).
The last two in the list, the snub cube and the snub dodecahedron, are dit-
ferent in that they cannot be constructed by any simple operation applied to the
regular solids. They are also different in that each one comes in a lefrhanded
and a right-handed version, congruent to each other by reflection, but not by
any orientation-preserving motion of 3-space. We give in Exercise 46.4 a method
of constructing the snub cube by solving a cubic equation, and I leave to you to
find a construction of the snub dodecahedron.

Corollary 46.2
The semivegular polyhedra have the following additional properties (cf. (44.4)):

(d) The dihedral angles at one vertex are equal to the dihedral angles at every
other vertex.

(e) The vertices lie on a sphere.

(f) Except for the pseudorhombicuboctahedron, there is a congruence of the solid
taking any vertex to any other vertex.

Proof This is a consequence of the classification, because we note in each case
that the vertex figure determines the global arrangement of taces, and that
arrangement is the same starting from any vertex. Thus Cauchy's theorem
(45.5) gives a congruence. This proves (f), which implies (d) and (e).

In the case of the pseudorhombicuboctahedron, its construction from the
normal rhombicuboctahedron shows that it satisfies (d) and (e). But the rigid
motions of this figure are not transitive on the vertices (Exercise 46.5).
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Next we consider the nonuniform convex face-regular polyhedra. We have
seen five of these in the classification of solids hounded by equilateral triangles
(45.6). Others can be made by cutting or gluing polyhedra we already know. For
example, start with an icosahedron. The five faces at a single vertex are
bounded by a regular pentagon. Cutting the figure by the plane of that pentagon
gives a pentagonal pyramid on one side, and leaves a diminished icosahedron,
with one pentagonal face and 15 triangle faces, on the other side. If we cut off a
second pentagonal face parallel to the first one, we get a pentagonal antiprism.
But if we cut off a second pentagonal face adjoining the first, we get a bidimin-
ished icosahedron. Then we can cut off a third pentagonal face, making a tvidi-
minished icosahedron with 3 pentagonal and 5 trianuglar faces. This last figure is
minimal in the sense that it cannot be separated further into the union of regu-
lar-faced polyhedra, so it is called an elementary face-regular polyhedron. The
tetrahedron is already elementary as it stands. But the octahedron can be sepa-
rated into two square pyramids.

On can also make face-regular poly- /
hedra by gluing others together. For ex-
ample, one can glue a square pyramid
onto one face of a cube, or onto two op-
posite faces of a cube. Or one could cut
out the middle section of the rhombi-
cuboctahedron and glue the top and \
bottom caps together (in two different PR T O
ways) to make new figures.

According to Johnson's classification (1966) there are 91 nonuniform convex
face-regular polyhedra. The complete classification of these is not a simple
matter, so we will confine ourselves to proving that their number is finite.

Theorem 46.3
There is only a finite number of nonuniform convex face-regular polyhedra (up to
congruence, after fixing the length of an edge).

Proof The key point (see lemma below) is to show that for n sufficiently large,
any convex face-regular polyhedron with an n-face must be a prism or an anti-
prism, which is uniform. It follows that for nonuniform solids, there is only a
finite number of possible face types, and hence only a finite number of possible
vertex configurations. Each of these has a positive defect, and there is only a
finite number of ways of choosing these to add up to 4r (45.2). Then there is
only a finite number of ways of arranging these vertex types into a global figure,
and by Cauchy's theorem any two with the same arrangement are congruent. So
it remains only to prove the following lemma.
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Lemma 46.4
There is an ng such that if a convex face-regular polyhedron has a face with n = ng
sides, then it is either a prism or an antiprism.

Proof This lemma is actually true for ny = 11, but to make the proof simpler,
we will prove it for ny = 42. Let us consider what happens at a vertex of the n-
gon, and to begin with we consider a 3-face vertex (a,b,n). We know from the
proof of (46.1) that

1 +1 + 1 - 1

a b n” 2
On the other hand, in order to make a 3-dimensional figure, the sum of the face
angles of the a and b faces must be greater than the face angle of the n-gon. This
gives a second inequality

11

a b n 2
From these two it follows that

1 1 1 1

2 a b n

Now, the minimum nonzero value of the expression on the left, for a,b = 3, is
1/42 (Exercise 46.6). So if we take n > 42, this inequality implies

so (a,b) = (3,6) or (4,4). Thus we have shown that for n > 42, the only possible
3-faced vertex configurations at a vertex of the n-gon are (3,6,n) and (4,4, n).

A 5-faced vertex including an n-face for n = 6 is impossible, so let us con-
sider a 4-face vertex (a,b,c,n). In this case, the same argument as above shows
that

The minimum nonzero value of this expression for a,b,c = 3 is %, so forn =12,
we obtain

111

a b ¢
in which case a = b = ¢ = 3. So if we have a 4-face vertex along the n-gon, it
must be (3,3, 3,n).
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Now we will show that the resulting
figure must be a prism or an antiprism.
First suppose A is a (3,6,n) vertex, and
let B be the vertex at the other end of
the 3-6 edge. Because of the dihedral
angle along the 3-6 edge, the angle be-
tween the two other edges at B will be
the same as the face angle at A—ct.
(44.5). Therefore, the remaining faces at
B must be another n-gon, or (3,6),(4,4),
or (3,3,3) by the argument above. But
the latter three cases lead to face angles
at B totaling 2z, which is impossible.
Therefore, the third face at B is another
n-gon. Then the third vertex C of the
triangle ABC becomes a (3,n,n) vertex,
which is impossible. Thus (3,6,n) can-
not occur.

Next suppose there is a (4,4, n) ver-
tex A. Let B be the vertex at the other
end of the 4-4 edge. Then as above, the
angle between the edges at B is the Y 4
same as at A. We cannot add (3,6) or
(4,4) or (3,3,3), as before, so we must A

"

Lo

have another n-face at B. This forces the
whole figure to be an n-prism.

Now suppose there is a (3,3,3,n)
vertex at A. At the next vertex of the n-
gon we then have at least one triangle.
We have seen that (3, 6,n) is impossible,
so it is also a (3,3, 3,n) vertex. Thus all
the vertices of the n-gon are (3,3,3,n)
vertices. These vertices are not rigid,
but if we fix one dihedral angle « along the edge AB, the other dihedral angles
between the triangles are all determined, as are the angles between edges at the
new vertices C, D, etc. Furthermore, we see that the possible values of these an-
gles repeat after moving over two vertices. If the angles «,d along the n-gon are
all equal, then the angles at C, D will be equal to those at A, B, and by the same
reasoning as in the two previous cases, the remaining face at C must be another
n-gon. This forces the figure to be the n-antiprism.

It, on the other hand, « and J are different, then the angles at C, D will be one
greater and one lesser than those at A, B. We may assume that the angle at C is
greater than the one at A. Then the remaining face at C will be an n'-gon for
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some n’ > n. But the n'-gon also passes through D, so the angle at D must be
equal to the one at C, a contradiction.

Thus we see that the only convex face-regular polyhedra containing an n-gon
for n = 42 are the prisms and the antiprisms, as required.

Example 46.4.1

To illustrate the process of finding face-regular solids, let me give an example.
One day I was searching for solids made of only squares and triangles (Exercise
46.7) and discovered the following one, which I call a stretched cube. Take a
cube, choose two opposite vertices A, B, and cut it in two pieces so that one
piece has the three faces at A and the other piece has the three faces at B. Now
pull the two pieces apart just far enough so as to fill in the gap with equilateral
triangles. First I imagine the construction. Then I make a sketch, to see how the
faces will fit together. Then I list the vertex types and check that the sum of the
deficiencies is 4.

Number Vertex Type Deficiency Total Deficiency

2 (4,4,4) n/2 n
6 (3,3,4,4) n/3 n
6 (3,3,3,3,4) n/6 n

4m

Then 1 make a cardboard model. T had to squeeze a bit to make the last
couple of faces fit in place, but that inaccuracy did not seem more than the usual
margin of error in my models. It was only later that I realized that this poly-
hedron is impossible (Exercise 46.8). So now [ like to hold the model up in front
of my class and say, “This polyhedron does not exist.”

Exercises

46.1 Show that the only possible triples of integers (a, b, ¢) all greater than or equal to 3,
satisfying the inequality
1 N 1 1 . 1
a b ¢ 2
and the additional property that whenever two are distinct, the third is even, are
those listed in Table 2.
46.2 Show that the only possible quadruples (a. b, ¢, d) of integers greater than or equal to
3 (up to cyclic permutation) satisfving
! + ! + ! + ! >1
a b ¢ d
and if a = 3, then b = d, are those listed in Table 2.
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46.3

If ap,....a; is a collection of k = 5 integers, all greater than or equal to 3, satisfying
the inequality .
2
E — > k-2,
=1 i

show that k = 5, and the only possibilities are those listed in Table 2.

(The snub cube.) In a plane, consider a (—b‘s,’ tLJ
tilted square with vertices (+a, +b),
(+b, Fa). Now consider a cube of side [-’-F,- b)
2 in three-space, centered at the origin,
and put one of these tilted squares on A
each face, always with the same orien-
tation as seen from the outside of the K
sube. Thus the comers of the tilted
cu (-4 -b)

(h,-4]

square in the top face will have coor-
dinates (a, b, 1), etc. Join the vertices of
these tilted squares to nearby vertices
in the other faces, to get a figure of
6 squares and 32 triangles. Now write
equations in a,b to express that the
sides of these triangles are all the same
length (including the sides of the tilted
squares). Show that two of these equa-
tions imply the rest, and then elimi-
nate a or b to obtain one irreducible
cubic polynomial with integer coeth-
cients. Solving this equation will con-
struct the snub cube, which is there-
fore not constructible with ruler and

compa4ass.

Explain in what way two vertices of the pseudorhombicuboctahedron are different
s0 as to prevent the existence of a rigid motion or congruence sending one to the
other.

5 (a) Show that the minimum nonzero value of the expression |1/2 — (1/a) — (1/b)| as

a, b range over all integers greater than or equal to 3 is 4]—2

(b) Similarly, the minimum nonzero value of |1—(1/a)—(1/b)—(1/c)| for
a,b,c=31s 35

See how many convex face-regular polyhedra you can discover using only equilat-
eral triangles and squares.

Give a convincing reason why the stretched cube of (46.4.1) does not exist.
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46.9 Some of the most interesting of the nonuniform face-regular polyhedra are those
elementary ones that do not arise from cutting up uniform solids. For example, see
whether you can make a model (and prove the existence) of a Bilunabivotunda,
having four pentagonal faces, two squares, and 8 equilateral triangles.

47 Symmetry Groups of Polyhedra

We will make use of some group theory and a little linear algebra to study the
symmetry of polyhedra. The purpose of this section is to elucidate the geometry
of polyhedra by finding their symmetry groups, and at the same time to illus-
trate some concepts of group theory by their applications to geometry.

We measure the symmetry of a figure by looking for ways in which the fig-
ure is congruent to itself. So we define a symmetry of a figure to be a one-to-one
mapping of the figure onto itself that is a congruence, i.e., that preserves all dis-
tances and angles. One symmetry followed by another is again a symmetry; the
inverse mapping of a symmetry is a symmetry; and composition of symmetries
is an associative operation. Hence the set of all symmetries of a figure (includ-
ing the identity map) is a group, which we call the symmetry group of the figure.

For a simple example, look at an

equilateral triangle in the plane, and la- i
bel its vertices 1,2,3. A clockwise rota-
tion through an angle of 27/3 maps the
triangle onto itself by a congruence, so 3
that is a symmetry. This symmetry in-
duces a permutation of the vertices,
1 — 2 — 3 — 1, which we represent by the symbol (123). If we perform this ro-
tation twice, we get another symmetry, which permutes the vertices by (132). A
third application of the same rotation brings us to the identity, which we denote
by e.

Another kind of symmetry is obtained by dropping the altitude from the
vertex 1 to the midpoint of the side 23, and reflecting the figure in that line. This
induces the permutation (23) on the vertices. Reflections in two other axes give
the permutations (12) and (13).

A symmetry of the triangle is completely determined if we know what it
does to the vertices. So we can list the symmetries so far mentioned by giving
the corresponding permutations:

A

e, (123), (132), (12), (13), (23).

It happens that these are all possible permutations of the three symbols 1,2, 3.
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We conclude (a) that we have now listed all possible symmetries of the triangle,
and (b) that the group of symmetries of the triangle is isomorphic to the group of
permutations of three symbols, called the symmetric group on three letters, and
denoted by the symbol S;. We notice in this example that there are three differ-
ent kinds of symmetries: the identity, the rotations, and the reflections.

An isosceles triangle has a group of only two symmetries: the identity and
one reflection. A triangle of three unequal sides has a symmetry group consist-
ing of only the identity. This is a trivial symmetry group.

A regular polygon of n sides has a symmetry group consisting of 2n ele-
ments. The rotation through an angle of 2z/n generates a cyclic subgroup of n
elements, consisting of the identity and n — 1 rotations through angles 2zi/n for
i=1,2,....,n—1. Then there are n reflections in lines passing through the ver-
tices and the midpoints of the sides of the polygon, making 2n symmetries in all.
This group is called the dihedral group D,, of order 2n. (Note that terminology in
the literature is not consistent. Some authors call this group Ds,,.)

Naturally, the situation in three
dimensions is more complicated. To
fix our ideas and to illustrate what can
happen, let us consider the symmetries
of a tetrahedron. We label its vertices
1,2,3,4.

One way to make a symmetry is to Y 3
rotate the figure around a line. Take, for
example, the line through the vertex 1 and the midpoint of the opposite side.
Rotating around this axis induces a symmetry of the equilateral triangle and a
permutation of the vertices of the tetrahedron (234) that leaves 1 fixed. Twice
this will give (243).

On the other hand, if we take an axis through the vertex 2 and the midpoint
of its opposite side, we obtain symmetries that induce the permutations (134)
and (143).

In the case of a plane figure, it is obvious that one rotation followed by
another rotation is again a rotation (or the identity), since all the rotations are
around the same point. But in three dimensions, if we rotate first around one
axis and then around another axis, we will certainly obtain a symmetry of some
kind (i.e., a congruence), but it is not obvious in general whether this will be
another rotation. Try it with a model of a tetrahedron and see what happens!
Since a symmetry of the tetrahedron is completely determined by what it does
to the vertices, we can at least compute the permutation induced by the compo-
sition of two rotations. Let us do (234) first followed by (134). Then, reading
from left to right

1

(234)(134) = (13)(24).
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So there is a symmetry that interchanges 1 and 3 and also interchanges 2 and 4.
If we take an axis through the midpoint of the side 13 and the midpoint of the
side 24, a rotation of m around this axis will induce this symmetry. So in this
case, the composition of rotations around two different axes is equal to a rotation
around a third axis. We will see later that this is true in general (47.2).

Besides rotating the figure around an axis, there are several other ways we
can contemplate making symmetries.

One is reflection in a plane. For example, if we consider the plane contain-
ing the edge 12 and the midpoint of the edge 34, we can reflect the figure in this
plane and obtain a symmetry (34) that leaves 1 and 2 fixed.

Another method is to pick up the figure, turn it around any way, and then
replace it in the same spot. Call this a rigid motion in 3-space.

Among the abstract symmetries, defined simply as congruences of the figure
with itself, we can consider those that preserve ovientation. Imagine a creature
sitting on one vertex of the figure who numbers the faces at that vertex in a
clockwise order. If the ordering is still clockwise after the congruence, we say
that it preserves orientation. Otherwise, it reverses orientation. For example,
rotations preserve orientation, and reflections reverse orientation.

How are all these kinds of symmetries related to each other? Let R denote
the set of rotations, plus the identity. It is clear that rotations are rigid motions,
but it is not obvious that they form a group—we have to show that the product of
two rotations is again a rotation. Let Gy denote the group of rigid motions. This
group is clearly contained in G;, the group of all orientation-preserving symme-
tries. And G, is contained in G, the group of all symmetries:

RS Gy, S G CG.

We will now show, by a counting argument, that R = G, = G; and G; < G.
First we count elements in R. For each vertex, there are two rotations leaving
that vertex fixed. For each pair of opposite edges, there is one rotation sending
those edges to themselves. Adding in the identity makes at least twelve ele-
ments in R. On the other hand, G, # G because there are reflections that do not
preserve orientation. And since a symmetry is determined by its effect on the
vertices, G is isomorphic to a subgroup of the symmetric group 84, which has 24
elements:

RS G, < GC 8,

Now, R has at least 12 elements, and S; has 24 elements, and the order of a sub-
group divides the order of a group, so we conclude that R = Gy = G, and G = §;.
This shows that R is a group, the group of rotations of the tetrahedron, and the
whole group of symmetries is isomorphic to S;. The permutations in R are of the
type (123) or (12)(34), which are even permutations, so in fact R is isomorphic to
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the alternating group Ay of even permutations of four letters. Thus we have
proved the tollowing result.

Proposition 47.1

The group of all symmetries of the tetrahedron is isomorphic to the symmetric group
S4. The rotations of the tetrahedvon form a subgroup of ovder 12, isomorphic to the
alternating group Ay.

A similar analysis of the rotations and symmetries of the octahedron is
in Exercises 47.3-47.6. Before discussing the icosahedron, we prove a general
result.

Proposition 47.2

The composition of twe rotations of a polyhedron is again a rotation (or the identity).
Move generally, any orientation-presevving symmetry of a polyhedron is a rotation
about some line (or the identity).

Proof Since rotations preserve orientation, it will be sufficient to prove the
second statement. So let ¢ be an orientation-preserving symmetry of a poly-
hedron. First we invoke the notion of cenfroid (or center of gravity) of a solid
figure (see, e.g., Lines (1965), Chapter IX). It is clear that ¢ sends the centroid to
itself. Taking the centroid to be the origin of a coordinate system for R*, we can
extend ¢ to an isometry of R* leaving the origin fixed. In other words, ¢ pre-
serves distances and angles.

Now we think of R® as a three-dimensional vector space over R. Since vec-
tor addition is defined by the parallelogram law, g(v1 + v2) = @(v1) + ¢(v2). It is
also clear that p(Av) = Ag(v) for any 4 € R. In other words, ¢ is a linear map of
R? into itself. The scalar product {v,w) can be defined as |v| - |w| - cos 8, where
is the angle between the two vectors. Since ¢ is an isometry, it preserves this
expression, and so ¢ preserves scalar product. In other words, ¢ is an orthogonal
linear transformation. Its determinant will be +1, with +1 preserving orienta-
tion and —1 reversing orientation.

The characteristic polynomial of ¢ has degree 3, so it will have a real root. In
other words, there is a real eigenvector e with ¢(e) = i(¢). Because ¢ is orthogo-
nal, 1 = +1.

If there is an eigenvector e with ¢(e) = e, then ¢ leaves the line containing ¢
fixed, and induces an orientation-preserving orthogonal map of a plane perpen-
dicular to e. This will be a rotation in the plane, so ¢ is the rotation around the
axis of ¢ as required.

If there is no eigenvector ¢ with g(e) = e, but only an ¢ with g(e) = —e, then
the line of e is sent into itself, and ¢ induces an orientation-reversing map on the
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perpendicular plane. This is the reflection in a line of that plane that has a fixed
vector, contradicting the hypothesis that there was none.
So we conclude that ¢ is the rotation around a line, as required.

Remark 47.2.1

Thus it makes sense to speak of the rotation group of any polyhedron, and this
group is identical with the group of rigid motions of the figure into itself and the
group of all orientation-preserving symmetries.

Now let us discuss the rotation group G of the icosahedron. Knowing that all
the rotations form a group, we can use some group theory to find the order of
the group, without listing all the individual elements. Let A be one vertex of the
icosahedron, and let H, be the subgroup of G consisting of those rotations that
leave A fixed. This is the stabilizer subgroup of A. If a rotation leaves A fixed, its
axis must be the line through A and its opposite, or antipodal, point. A rotation
through 2z/5 around this axis sends the icosahedron into itself, and generates
the group H,, which has order 5.

Next, we look for the orbit of A under the action of the whole group G, that
is, the set of points to which A can be sent by elements of G. A rotation of order
3 around an axis through the center of a face adjoining A sends A to one of its
neighboring vertices B. In the same way, any vertex can be sent to any of its
neighboring vertices, and thus the orbit of A under G is the entire set of 12 ver-
tices of the icosahedron. For any vertex C, the set of elements of G that send A
to C is a left coset of H,, of the form gH,, where g € G and g(A) = C. The num-
ber of cosets is called the index of the subgroup, and one knows that the order of
G is the product of the order of the subgroup H,, which is 5, and the index,
which is equal to the number of elements in the orbit of A, which is 12. So the
order of G is 60.

In fact, it is not too hard to count all the elements of G directly. Each vertex,
together with its antipode, corresponds to a subgroup of order 5, which contains
the identity and four elements of order 5. So there are 4 x 1—22 = 24 elements of
order 5.

Rotation around an axis through the center of opposite faces has order 3.
There are two of these for each pair of opposite faces, hence 2 x 22—0 = 20 ele-
ments of order 3.

Rotation around an axis through the midpoints of opposite edges has order 2.
So there are 1 x % = 15 elements of order 2. Summing up, we have

identity 1
elements of order 5 24
elements of order 3 20
elements of order 2 15
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Next, let us look at subgroups of G and their relation to the geometry of the
icosahedron. We have already seen that the stabilizer of a vertex is a subgroup of
order 5. Similarly, the stabilizer of the midpoint of a face is of order 3, and the
stabilizer of the midpoint of an edge is of order 2.

If we consider an axis through two opposite vertices, the stabilizer of this line
includes the stabilizer of one vertex, but allows also rotations that send the vertex
to its antipode. This is a dihedral group Ds. Similarly, the stabilizer of an axis
through the middle of two opposite faces is a dihedral group D; (isomorphic to
the symmetric group 8;). The stabilizer of an axis through the middles of two
opposite edges is D, (isomorphic to the Klein four-group V).

These subgroups have orders 2, 3,5,4,6, 10. There are also subgroups of order
12 (Exercise 47.9). On the other hand, we can show that certain other orders of
subgroups are impossible. Let us show, tor example, that there is no subgroup H
of order 15. If there were, then by Cayley’'s theorem it would contain an element
of order 5, which would be a rotation around a vertex A. Then H would contain
the group generated by that element, which is H,. The orbits of the set of ver-
tices under the action of H, are A, its antipode, and two orbits of 5 vertices each.
The group H would also contain an element of order 3, so the orbit of A under H
would contain at least 6 elements, and so the order of H would be at least
5 x 6 = 30, a contradiction. (See also Exercise 47.10.)

Now let us discuss conjugation and normal subgroups. Two elements a,b e G
are conjugate if there exists a g e G with b = gag™'. If a is a rotation around a
vertex A, then b is the same kind of rotation around the vertex B = g(A). Indeed,
g1 takes the vertex B back to A, a performs the rotation, and g takes A back to B.
So geometrically, two rotations are conjugate if they are rotations through the
same angle around two different axes. In particular, since any point of the ico-
sahedron can be moved to its antipode, every rotation is conjugate to its own
inverse. Thus all elements of order 2 are conjugate, and all elements of order 3
are conjugate. But the elements of order 5 fall into two conjugacy classes: The
rotations of +2r/5 form one class, and the rotations of +4n/5 form the other
class. They are distinguished by the property that the first kind map some faces
to an adjacent face, while the second kind map no face to an adjacent face. Thus
the whole group is divided into conjugacy classes with 1,12,12,20, and 15 ele-
ments, respectively.

A normal subgroup of a group G is a subgroup N that is stable under conjuga-
tion: gNe~! = N for any g € G. If a normal subgroup contains an element a, it
must also contain all the conjugates of a. In this way we can verify that the
rotation group of the icosahedron contains no normal subgroups except the
identity {e} and the whole group G. Indeed, a normal subgroup N contains 1, its
order divides 60, and N must be a union of 1 together with some subset of the
conjugacy classes of orders 12,12, 20, 15. There is no sum of these numbers that
divides 60 except 1 and 60. Thus G has no nontrivial normal subgroups, and we
say that G is a simple group.
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Finally, we show that the icosahedral group G is isomorphic to the alternat-
ing group As on 5 letters. Define a frame of the icosahedron to be a set of three
mutually perpendicular axes through the middles of opposite edges. There are
five such frames. Any rotation of the icosahedron induces a permutation of
these five frames. An element of order 5 gives a permutation (abcde). An ele-
ment of order 3 gives a permutation of the form (abc). An element of order 2
gives a permutation of the form (ab)(ced). These are all even permutations, so we
obtain a homomorphism from G to A;. Clearly the map is injective, and the two
groups have the same order, so G = As. Thus we have proved the following.

Proposition 47.3
The group of rotations of the icosahedron is a simple group of ovder 60, isomorphic to
the alternating group As.

The exercises contain more examples of rotation groups, symmetry groups,
and their properties.

The rotations of a polyhedron induce rotations of the sphere, and so deter-
mine certain finite subgroups of the special orthogonal group SO(3) of orthogonal
linear transformations with determinant 1. The next theorem shows that the
rotation groups of the regular polyhedra (plus the cyclic and dihedral groups)
are in fact the only possible finite subgroups of SO(3).

Theorem 47.4
Any finite subgroup of SO(3) (the rotation group of a sphere) is isomorphic to one of
the following:

Cy, cyclic, forn = 1,

D,,, dihedral, for n = 2,

T, the tetrahedral group, =A,,

O, the octahedral group, =8,

I, the icosahedral group, =As.

Furthermore, if two finite subgroups of SO(3) are isomorphic as abstract groups, then
they are conjugate as subgroups of SO(3).

Proof Fix a sphere S centered at the origin, and regard SO(3) as the group of
rotations of the sphere. Let G be a finite subgroup of SO(3), i.e., a finite group of
rotations of the sphere §, and let N be the order of G.

Each nonidentity element of G is a rotation about some axis passing through
the center of the sphere (47.2). The points where this axis meets the sphere are
the two poles of the rotation. Since the group G is finite, the set P of all the poles
of all the rotations will be a finite set. Furthermore, G acts as a group of permu-
tations on this set, because if x € P is a pole of a rotation a € G, and if g is any
element of G, then g(x) is a pole of the conjugate rotation gag~"* (cf. discussion of
the icosahedron above).
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For each x € P, let H, < G be the stabilizer subgroup of x, and let P, = P be
the orbit of x under the action of G. Then ryn, = N, where r, is the order of the
subgroup H,, and n, is the number of points in the orbit P, {cf. discussion of
stabilizers and orbits in the case of the icosahedron above).

On the other hand, we can count the nonidentity elements of G as follows.
Each one has two poles, and for each pole x there are r, — 1 elements in the
subgroup H,. If we sum over the poles, then

%Z(rx— 1) =N-1.

xeP

Now write P as the union of its orbits P;, i = 1,...,t, under G. Within an orbit,
the numbers r, and n, are the same, so we can rewrite this sum as a sum over
the t orbits of P,

1 t

EZ”"(T" ~1)=N-1.

i=1

Now recall »n; = N for each i, and divide by N. This gives the fundamental
equation

‘ 1 ! 2 2
2325
We shall carry out the classification of possible subgroups G by examining
possible solutions of this equation for integers r; = 2 and N = 1, remembering
that r; divides N for each i.
Since each r; = 2, the left-hand side is at least %t, while the right-hand side is

less than 2. We conclude that t < 3.

Case 1 t=1. The only solution of the equation is r = N = 1, which does not
satisty our restriction r > 2, but we can associate it with the trivial subgroup
G = {e}.

Case 2t = 2. In this case the equation reduces to

2_1.1
NW_I’] }’2.

Remembering that r;n; = N and multiplying through by N, we get
n +ny = 2.

The only solution here is n; = ny = 1, so r; = r; = N. Thus there is just one axis
with its two poles, and G is isomorphic to a cyclic group of order N, for any
N=1.
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Case 3 t= 3. In this case our equation gives

1 1 1 1 2

E + g + E =1+ KT
In particular, the left-hand side must be greater than 1, and the only triples of
r1,72,¥3 = 2 that achieve this are (2,2,n),(2,3,3),(2,3,4),(2,3,5).

If (r,r2,7r3) = (2,2,n), then N=2n, and nz = 2. Thus there is one axis
having a cyclic group of rotations of order n, and there are two other orbits of n
axes each of twofold rotations. Thus G is a dihedral group D,,.

Now suppose (r1,r2,73) = (2,3,3). Then we obtain N = 12 and (n,,ny, n3) =
(6,4, 4). Choose one of the orbits of four points and call them A, B, C,D. The sta-
bilizer H, is a group of order 3, leaving A fixed and permuting B, C, D cyclically.
Hence B,C,D are equidistant from A. The same argument applies to B, C, D, so
all four points are equidistant from each other. Joining them by lines makes a
tetrahedron inscribed in the sphere. Now, G permutes A, B, C, D, so it induces
rotations of the tetrahedron, and we get a group homomorphism G — T, where
T is the rotation group of the tetrahedron. The image of G clearly generates T,
and both groups have the same order, so G is isomorphic to T.

We leave the remaining two cases to the reader (Exercise 47.16).

For the last statement of the theorem, suppose that G, and G; are two finite
groups of rotations of the sphere that are isomorphic as abstract groups. Then
they are isomorphic to the same one in the list. But the proof of the theorem
shows more. In the cases C,,, D,, there is a principal axis around which there are
rotations through 2n/n, and this axis determines the group. For C,,, we can move
the principal axis of G, to that of G; by a rotation g of the sphere, and this same
element creates a conjugacy G; = gG,g~'. For D,, we can require in addition
that g take a secondary axis of G, to G, and then again G, = gGg~'.

In the case of T, O, I, we showed that there is an inscribed tetrahedron, octa-
hedron, or icosahedron, and G is its group of rotations. We need only find a
rotation g of the sphere that takes two neighboring vertices of the first figure
to the second. The rest will follow, and then G, = gG,g~! will be the required
conjugacy.

Exercises

47.1 Label the vertices of a regular pentagon 1,2.3,4,5, and list all the symmetries of
the pentagon as permutations of these five symbols. Show that the resulting group,
isomorphic to Ds, is actually a subgroup of the alternating group A; inside of 8s.

47.2 (a) List all the rotations of a tetrahedron as permutations of the four vertices.
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47.3

47.4

47.5

47.6

47.7

47.8

47.9

47.10

47.11

47.12

8. Polyhedra

(b) List the other 12 symmetries of the tetrahedron. Which of these are given by
reflection in a plane? Show that those that are not reflections can be described as
screw reflections, namely, reflection in a plane followed by a rotation about an axis
perpendicular to the plane.

Mark the vertices of an octahedron
1,2,...,6. List all the rotations of the
octahedron by the permutations they
induce on the vertices. How many el-
ements of each kind are there? What
are their orders? How many in all?

The octahedron has four axes a,b,c,d running through the centers of opposite
faces. Any rotation induces a permutation of a, b, ¢, d. Thus we get a map ¢ : R — Sy
from the set of rotations to the symmetric group on the four letters a, b, ¢, d. Show
that R has at least 24 elements, show that the map ¢ is injective, and conclude that
R is a group isomorphic to 8.

Find subgroups of the group of rotations of the octahedron isomorphic to
C3,Cs3, Cy, Dy = V, D3 = 83, Dy, and describe them in terms of the geometry of the
octahedron.

Show that the group of all symmetries of the octahedron is a group of order 48.

Give a geometric proof that the composition of two rotations of the sphere about
arbitrary axes is equal to another rotation of the sphere, by using spherical geome-
try. Show that it must have a fixed point (cf. Exercise 17.11 and note that trans-
lations do not exist on the sphere).

Extend the proof of Proposition 47.2 to show that any symmetry of a polyhedron
is either the identity, a rotation, a reflection in a plane, or a screw-reflection (cf.
Exercise 47.2).

Show that it is possible to select 4 faces of an icosahedron in such a way that the
subgroup of rotations that preserve that set of four faces is isomorphic to the group
T of rotations of the tetrahedron.

Show that the group of rotations of the icosahedron contains no subgroup of order
20 or 30.

Show that the full group of symmetries of the icosahedron is a group of order 120
that is not isomorphic to the symmetric group 8s.

In the group G of rotations of the icosahedron, show that one can find elements a, b
with the properties
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47.13

47.14

47.15

47.16

47.17

47.18

47.19

(a) a and b together generate the whole of G;
(b) a* =e,b® =e,(ab)’ =e.

Now show that G is the largest group with the properties {a), (b), in the following
sense: If G' is another group, generated by elements x, y satisfying »* = y* =
{Xy)s =¢, and if p: G' — G is a homomorphism that sends x,y to a, b, then ¢ is
an isomorphism. We say that G is the group given by generators a,b and relations

(b) above.

(a) Give a criterion in terms of the geometry of the axes and angles of rotation for
two rotations of a polyhedron to commute with each other (i.e., ab = ba).

(b) Give a similar criterion for a rotation to commute with reflection in a plane.
(¢) Show that the antipodal map commutes with all other symmetries.

(a) Show that the group of rotations of an n-sided prism and an n-sided antiprism
are both isomorphic to the dihedral group D,..

(b) Show, however, that the full group of symmetries of the n-prism is not iso-
morphic (as an abstract group) to the symmetries of the n-antiprism. Hint: To show
that two groups are not isomorphic, you must find some group-theoretic property
true of one but not the other, such as having an element of a certain order, or having
a certain number of elements of a given order, or having an element of order 2 in
the center, i.e., that commutes with every other elements.

(a) Show that the rotation group and the full symmetry group of a cube are the
same as for an octahedron.

(b) Ditto for the dodecahedron and icosahedron.

(c) Examine the list of semiregular polyhedra (Theorem 46.1) and find in each
case the rotation group and the full symmetry group. Pay special attention to the
snub cube and the pseudorhombicuboctahedron.

Complete the proof of Theorem 47.4 by showing that in the cases (r,r:,13) =
(2,3,4) or (2,3,5) there is an octahedron or icosahedron inscribed in the sphere in
such a way that G is identified with its group of rotations.

If H is any subgroup of one of the groups C,, D,, T, O, 1, then of course H is iso-
morphic to a subgroup of SO(3) also. Verify that this does not contradict Theorem
47.4 by showing directly that any subgroup of any of the groups in this list is also
isomorphic to one of the groups in the list.

Show that the full symmetry group of the tetrahedron and the rotation group of the
octahedron are isomorphic as abstract groups, but they are not conjugate as sub-
groups of O(3), the orthogonal group of all symmetries of the sphere.

Consider the group of transformations of the set €U{x} generated by the
operations
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w:z =—z
p:z'=z71,
, 41
y:z'= -
z—1

(a) Show that «,f, y generate a group G of order 12.

(b) Show that G permutes the set {0, +1, +i, 0},

(c) Lift the operation of G on €, considered as a plane, to the unit sphere by
the stereographic projection, so that 41, 41 land on the equator. Then show that
G is identified with the group of rotations of the octahedron with vertices
{0, £1, £1, w0}

It was on that night that he dreamed his
dream of titanic basalt towers—dripping with
slime and ocean coze and fringed with great sea
mats—their wierdly proportioned bases buried
in gray-green muck and their non-Euclidean-
angled parapets fading into the watery distances
of that unquiet submarine realm.

- from Rising with Surtsey

by Brian Lumley

in Tales of the Cthulhu Mythos
by H. P. Lovecraft

& divers hands

Arkham, Sauk City (1990) p. 315
Reprinted by permission of
Arkham House Publishers, Inc.
Sauk City, WI, USA




Appendix:
~ Brief Euclid

For reference we include abbreviated statements of the most frequently quoted
results from Euclid's Elements.

Book 1. Definitions

1.
2.
4.
8.
10.
15.
20.
23.

A point is that which has no part.

A line is length without breadth.

A straight line lies evenly with its points.

A plane angle is the inclination of two lines.

When the two adjacent angles are equal it is a right angle.

A circle is a line all of whose points are equidistant from one point.

A triangle with two equal sides is isosceles.

Parallel straight lines are lines in the same plane that do not meet, no mat-
ter how far extended in either direction.

Postulates

1.

o1 W

To draw a line through two points.

To extend a given line.

To draw a circle with given center through a given point.

All right angles are equal.

If a line crossing two other lines makes the interior angles on the same side
less than two right angles, then these two lines will meet on that side when
extended far enough.

Common Notions

1.
2.

Things equal to the same thing are equal.
Equals added to equals are equal.

481
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3. Equals subtracted from equals are equal.
4. Things which coincide are equal.
5. The whole is greater than the part.

Propositions
1. To construct an equilateral triangle on a given segment.

To draw a segment equal to a given segment at a given point.

To cut oft a smaller segment from a larger segment.

Side-angle-side (SAS) congruence for triangles.

The base angles of an isosceles triangle are equal.

If the base angles are equal, the triangle is isosceles.

It is not possible to put two triangles with equal sides on the same side of a

segment.

8. Side-side-side (SSS) congruence for triangles.
9. To bisect an angle.

10. To bisect a segment.

11. To construct a perpendicular to a line at a given point on the line.

12. To drop a perpendicular from a point to a line not containing the point.

13. A line standing on another line makes angles equal to two right angles.

15. Vertical angles are equal.

16. The exterior angle of a triangle is greater than either opposite interior
angle.

17. Any two angles of a triangle are less than two right angles.

18. If one side of a triangle is greater than another, then the angle opposite it is
greater than the other.

19. If one angle of a triangle is greater than another, then the side opposite it is
greater than the other.

20. Any two sides of any triangle are greater than the third.

22. To construct a triangle, given three sides, provided any two are greater
than the third.

23. To reproduce a given angle at a given point and side.

24. Two sides equal but included angle greater of two triangles implies base
greater.

25. Two sides equal and greater base implies greater angle.

26. Angle-side-angle (ASA) and angle-angle-side (AAS) congruence for
triangles.

27. Alternate interior angles equal implies parallel lines.

O W

Mo

28. Exterior angle equal to opposite interior, or two interior angles equal to two
right angles, implies parallel lines.

29. A line crossing two parallel lines makes alternate interior angles equal.

30. Lines parallel to the same line are parallel.

31. To draw a line parallel to a given line through a given point.

32. Sum of angles of a triangle is two right angles, and exterior angle equals the
sum of opposite interior angles.
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33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

44,
45.
46.
47.

48.

Lines joining endpoints of equal parallel lines are equal and parallel.

The opposite sides and angles of a parallelogram are equal.

Parallelograms on the same base and in the same parallels are equal.
Parallelograms on equal bases in the same parallels are equal.

Triangles on the same base in the same parallels are equal.

Triangles on equal bases in the same parallels are equal.

Equal triangles on the same base on the same side are in the same parallels.
Equal triangles on equal bases on the same side are in the same parallels.
A parallelogram is twice the triangle on the same base in the same parallels.
To construct a parallelogram with a given angle equal to a given triangle.
Parallelograms on opposite sides of the diagonal of a parallelogram are
equal.

To construct a parallelogram with given side and angle equal to a given
triangle.

To construct a parallelogram with a given angle equal to a given figure.

To construct a square on a given segment.

(Theorem of Pythagoras) The square on the hypotenuse is equal to the sum
of the squares on the sides of a right triangle.

If the sum of the squares on two sides equals the square on the third side,
the triangle is right.

Book II. Propositions

1.

11.

14.

The rectangle contained by two lines is the sum of the rectangles contained
by one and the segments of the other.

. The square on the whole line is equal to the squares on its two segments

plus twice the rectangle on the two segments.

. The square on half a line is equal to the rectangle on the unequal segments

plus the square of the difference.

. The rectangle on a line plus an added piece with the added piece, plus the

square of half the segment, is equal to the square of the half plus the added
piece.

To cut a line so that the rectangle on the whole and one segment is equal to
the square on the other segment (extreme and mean ratio).

To construct a square equal to a given figure.

Book III. Propositions

1.
2.
5.
6.
10.
11,

16.

To find the center of a circle.

The segment joining two points of a circle lies inside the circle.

If two circles intersect, they do not have the same center.

If two circles are tangent, they do not have the same center.

Two circles can intersect in at most two points.

12. If two circles are tangent, their centers lie in a line with the point
of tangency.

The line perpendicular to a diameter at its end is tangent to the circle, and




484 Appendix: Brief Euclid

the angle between the tangent line and the circle is less than any rectilineal
angle.

17. To draw a tangent to a circle from a point outside the circle.

18. A tangent line to a circle is perpendicular to the radius at the point of
tangency.

19. The perpendicular to a tangent line at the point of tangency will pass
through the center of the circle.

20. The angle at the center is twice the angle at a point of the circumference
subtending a given arc of a circle.

21. Two angles from points of a circle subtending the same arc are equal.

22. The opposite angles of a quadrilateral in a circle are equal to two right
angles.

31. The angle in a semicircle is a right angle.

32. The angle between a tangent line and a chord of a circle is equal to the
angle on the arc cut off.

35. If two chords cut each other, the rectangle on the segments of one chord is
equal to the rectangle on the segments of the other chord.

36. From a point outside a circle, let a tangent and a secant line be drawn.
Then the square of the tangent line is equal to the rectangle formed by the
two segments from the point to the circle on the secant line.

37. From a point outside a circle, if two lines cut the circle, so that the square
of one is equal to the rectangle formed by the segments of the other, then
the first is a tangent line.

Book IV. Propositions

To inscribe a given segment in a circle.

To inscribe a triangle, equiangular to a given triangle, in a circle.

To circumscribe a triangle, equiangular to a given triangle, around a circle.

To inscribe a circle in a triangle.

To circumscribe a circle around a triangle.

10. To construct an isosceles triangle whose base angles are twice the vertex
angle.

11. To inscribe a regular pentagon in a circle.

12. To circumscribe a regular pentagon around a circle.

15. To inscribe a regular hexagon in a circle.

16. To inscribe a regular 15-sided polygon in a circle.

O W

Book V. Definitions
4. Magnitudes are said to have a ratio if either one, being multiplied, can
exceed the other.
5. Four magnitudes a, b; ¢, d are in the same ratio if for any whole numbers m,
n, we have ma > nb or ma =nb or ma < nb if and only if mc > nd or
mc = nd or mc < nd respectively.
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Book V1. Propositions

1.
2.

12.
13.
16.

30.
31.

Triangles of the same height are in the same ratio as their bases.

A line is parallel to the base of a triangle if and only if it cuts the sides pro-

portionately.

. A line from a vertex of a triangle to the opposite side bisects the angle if
and only if it cuts the opposite side in proportion to the remaining sides of
the triangle.

. The sides of equiangular triangles are proportional.

. If the sides of two triangles are proportional, their angles are equal.

. If two triangles have one angle equal and the sides containing the angle
proportional, the triangles will be similar.

. The altitude from the right angle of a right triangle divides the triangle into

two triangles similar to each other and to the whole.

To find a fourth proportional to three given lines.

To find a mean proportional between two given lines.

Four lines are proportional if and only if the rectangle on the extremes is

equal to the rectangle on the means.

To cut a line in extreme and mean ratio.

Any figure on the hypotenuse of a right triangle is equal to the sum of

similar figures on the sides of the triangle.

Book X. Propositions

1

117

. Given two unequal quantities, if one subtracts from the greater a quantity
greater than its half, and repeats this process enough times, there will
remain a quantity lesser than the smaller of the two original quantities.

. (not in Heath, but in Commandino). The diagonal of a square is incom-
mensurable with its side.

Book XI. Definitions

25
26
27
28

. A cube is a polyhedron made of six equal squares.

. An octahedron is a polyhedron made of eight equal equilateral triangles.

. An icosahedron is a polyhedron made by twenty equal equilateral triangles.
. A dodecahedron is a polyhedron made by twelve equal regular pentagons.

Propositions

21
28
29
31

. The plane angles in a solid angle make less than four right angles.

. A parallelepiped is bisected by its diagonal plane.

, 30. Parallelepipeds on the same base and of the same height are equal.
. Parallelepipeds on equal bases, of the same height, are equal.

Book XII. Propositions

2
3

. Circles are in the same ratio as the squares of their diameters.
. A pyramid is divided into two pyramids and two prisms.




486 Appendix: Brief Euclid

5. Pyramids of the same height on triangular bases are in the same ratio as
their bases.

7. A prism with a triangular base is divided into three equal triangular
pyramids.

Book XIII. Propositions
7. It at least three angles of an equilateral pentagon are equal, the pentagon
will be regular.

10. In a circle, the square on the side of the inscribed pentagon is equal to the
square on the side of the inscribed hexagon plus the square on the side of
the inscribed decagon.

13. To inscribe a tetrahedron in a sphere.

14. To inscribe an octahedron in a sphere.

15. To inscribe a cube in a sphere.

16. To inscribe an icosahedron in a sphere.

17. To inscribe a dodecahedron in a sphere.

18. (Postscript). Besides these five figures there is no other contained by equal
regular polygons.




~ Notes

Section 1. To appreciate this text you should have a copy of Euclid's Elements
handy. The most natural choice for an English-speaking reader is Heath's
authoritative translation and commentary (1926) available in an inexpensive
Dover reprint.

The “hard problem” in this section is discussed in Coxeter and Greitzer
(1967).

Section 5. For the history of the theorems of the three medians and the three
altitudes of a triangle, see Tropfke (1923) vol. 4, pp. 163, 164. Both are implicit in
the work of Archimedes, but were not included in the repertoire of elementary
geometry until much later.
The proof given for (5.6) is due to Gauss, Werke (1870-77), vol. 4, p. 396.
We give several different proofs that the altitudes of a triangle meet in a
point:

a) Gauss's proof (5.6)

using the Euler line (5.7)

using cyclic quadrilaterals (Exercise 5.7)

using the angle bisectors of the orthic triangle (5.10)
by analytic geometry (13.1)

in the Poincaré model ( Exercise 39.17)

using angle bisectors ( Exercise 40.14)

by non-Euclidean analytic geometry (41.13)

using the calculus of reflections (43.15).
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The Euler line (5.7) was discovered by Euler in 1765. The nine-point circle
appeared in a paper of Brianchon and Poncelet in 1821, and independently in a
paper of Feuerbach in 1822. Feuerbach found only six of the nine points, but
he also proved the remarkable result that this circle is tangent to the inscribed
circle and the three exscribed circles of the triangle.

Section 6. The axioms presented in this and subsequent Sections 7, 8, 9 are
essentially the same as the axioms proposed by Hilbert in his Foundations of
Geometry (1971). We have made a few small changes.

First of all, Hilbert postulates a set of points and a set of lines, together with
a relation of incidence “a point lies on a line.” We, however, postulate a set of
points, and take lines to be subsets of the set of points, so that the incidence of a
point and line simply becomes membership in the set.

Second, Hilbert formulates his axioms for 3-dimensional space. We have
taken only the plane axioms because they exhibit all the essential features of the
geometry we need.

Third, Hilbert is a minimalist. For example, in the (SAS) axiom (C6), having
assumed AB = DE, AC = DF, and / BAC = / EDF, he postulates only that
/. ABC = / DEF. He then proves as a theorem that /. ACB =~ / DFE and BC = EF.
This degree of minimalism in the axioms seems unnecessary for an elementary
text such as ours, so we have simplified in a couple of places by making an
axiom slightly stronger than necessary.

Exercise 6.3. Unfortunately, we do not have the space to develop the ideas of
projective geometry further. But see, e.g., Hartshorne (1967) for an introduction.

Exercise 6.9. Kirkman's schoolgirl problem was first published in the Lady's
and Gentlement's Diary for (1850). See Ball (1940), Chapter X, for an extensive
discussion. One solution can be found by taking the fifteen points of the projec-
tive 3-space over the field of 2 elements to be the girls, and the 35 lines of 3
points each to be the rows. Then with a little care you can find five lines that fill
the space and an automorphism & of order 7 that cycles those five lines through
the set of all the lines in such a way as to solve the problem.

Section 7. It is possible to take (7.1) as an axiom and then prove (B4), as is done
in Greenberg (1993).

Section 12. Here is what Dedekind says about continuity (from Stetigkeit und
Irrationale Zahlen (1872)):

I find the essence of continuity in the following principle: “If all the points of a
line fall into two classes in such a way that each point of the first class lies to the
left of each point of the second class, then there exists one and only one point
that gives rise to this division of all the points into two classes, this cutting of the
line into two pieces."




Notes 489

As mentioned before, I believe 1 am not wrong if [ assume that everyone will
immediately admit the truth of this assertion; most of my readers will be very
disappointed to realize that by this triviality the mystery of continuity will be
revealed. 1 am very glad if everyone finds the above principle so clear and so
much in agreement with his own conception of a line; for 1 am not in a position
to give any kind of proof of its correctness; nor is anyone else. The assumption of
this property of the line is nothing else than an axiom by which we first recognize
the continuity of the line, through which we think continuity into the line [die
Stetigkeit in die Linie hineindenken]. If space has any real existence at all, it does
not necessarily need to be continuous; countless properties would remain the
same if it was discontinuous. And if we knew for certain that space was discon-
tinuous, still nothing could hinder us, it we so desired, from making it continuous
in our thought by filling up its gaps; this filling up would consist in the creation of
new point-individuals, and would have to be carried out in accord with the above
principle.

Section 14. The theorem of Pappus occurs in a different form in Pappus (1876),
Book VII, Proposition 139.
I got the idea for Exercises 14.4-14.13 from a paper of Sturmfels.

Section 18. While the possibility of a non-Archimedean geometry was perhaps
fore-shadowed by the controversy about the angle between a circle and its tan-
gent line, started by Peletier and Clavius in the sixteenth century, the first
serious study of a non-Archimedean geometry is due to Veronese at the end of
the nineteenth century. Our treatment follows Hilbert's approach via fields. See
Enriques (1907), Chapter VIL.

Section 19. For the segment arithmetic, we follow Hilbert's Foundations (1971),
Chapter III, with simplifications by Enriques described in Supplement II. The
idea of making an arithmetic of line segments goes back to Descartes in La Geo-
metrie (1637), except that he made no effort to justify the usual rules of arithme-
tic as applied to line segments.

Section 22. Awareness of the problem of area grew in the nineteenth century
(see Simon (1906), Section 15). We follow Hilbert's treatment in his Foundations
(1971), Chapter 1V. Hilbert was the first to recognize the importance of Archi-
medes’ axiom in the theory. Terminology is not uniform. What we call “equal
content” is sometimes called “equicomplementable” (German: erganzungs-
gleich). What we call “equidecomposable” or “equivalent by dissection” is some-
times called “equivalent by finite decomposition” (German: zerlegungsgleich, or
teilungsgleich). The axiom (Z) is named after A. de Zolt, who attempted in 1881
to prove this statement geometrically (cf. Simon (1906), Section 15).

Section 24. For the history of the Bolyai-Gerwien theorem, see Simon (1906),
Section 15. For practical notes on efficient dissections, see Lindgren (1964). For
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Exercise 24.8, see Dudeney (1929). A new book by Frederickson (1997) promises
to become the standard reference for dissectors.

Section 25. There is a vast literature on the problem of squaring the circle and
attempts to understand the analytic as well as the geometrical significance of
the number n. In fact, this single problem has been the catalyst for significant
advances in many branches of mathematics over its 4000-year history. A full
discussion of the subject would lead way beyond the confines of this book. For
an approach to the literature, see, for example, Beckmann (1971), Hobson
(1953), Simon (1906), Section 6, and Rudio (1892).

Section 26. The correspondence between Gauss and Gerling can be found in
Gauss, Werke (1870-77), vol. VIIL, pp. 241 f.

Section 27. This treatment of the Dehn invariant is based on Cartier's Bourbaki
seminar talk (1985). See also Boltianskii {1978) for a detailed treatment of the
problem.

Section 28. There is an extensive literature on these classical problems and
attempts at their solution. See, for example, Klein (1895), Enriques (1907), or
Lebesgue (1950). Descartes (1637) was already aware that the first two required
cubic equations and could not be solved by quadratic equations. The first proof
of the impossibility was given by Wantzel (1837), but his proof has a gap. The
first complete proof is due to Petersen (1871), cf. also Petersen (1878). Our proof
using the notion of the degree of a field extension and the characterization (28.7)
using the Galois group are apparently due to van der Waerden (1930).
For the squaring of the circle, see notes to Section 25.

Section 29. Gauss's proof of the constructibility of the regular 17-gon can bhe

found in his Disquisitiones Arithmeticae, reprinted in his Werke (1870-77), vol. L.
The construction given in the text is due to Maywald: See the book of Gold-

enring (1915), p. 16, who collected more than twenty different constructions.

Section 30. For references on the use of the marked ruler for solving the classi-
cal problems of trisecting the angle and doubling the cube, see Pappus (1876)
Book 111, Section 7, Enriques (1907) 11, pp. 204 ff and pp. 233 ff and Knorr (1986)
pp- 341 ff.

In his history of the conic sections in antiquity, Zeuthen (1886) expresses the
opinion that the early geometers accepted the use of the marked ruler (German:
Einschiebung; French: régle a glissiére; Italian: riga segnata; Greek: neusis)
along with the ruler and compass as a legitimate tool of construction, and that it
was only from the time of Plato and Euclid that a strict distinction was made of
those problems that could be solved with ruler and compass only. Once the
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theory of conics was well developed, the use of conics to solve the “solid” prob-
lems was preferred to the marked ruler.

The construction of (30.1) is ascribed by Pappus to “the ancients,” but he
says that the construction of (30.2) is due to Nicomedes (see Pappus (1878),
Book IV, Proposition 32).

Section 31. The story of the discovery of the solutions to the cubic and quartic
equations in the early sixteenth century by Ferro, Tartaglia, Cardano, and Fer-
rari is one of the most colorful chapters of the history of mathematics (see, for
example, Eves (1953), Section 8-8). The solution of the casus irreducibilis of the
cubic equation by trisecting an angle is due to Viete.

Viete's construction of the regular heptagon was published in his Supple-
mentum Geometriae of 1593 (reprinted in Viete (1970)). Similar constructions
have been rediscovered periodically: See Collins (1866), Plemelj (1912), Bie-
berbach (1952), Gleason (1988), among others. Archimedes’ work on the hepta-
gon (Exercise 30.6) was lost until 1926, when it was found in an Arabic manu-
script (see Knorr (1986) pp. 178 ff).

Section 32. Consult your favorite algebra book. One I like is Stewart (1989).

Section 33. References to the work of Proclus, Tacquet, Clairaut, Clavius, Sim-
son, and Playfair can be found under their names in the References.

For more details on the history of the theory of parallels and the discovery of
non-Euclidean geometry, see the book of Bonola (1955), which includes the texts
of Bolyai and Lobachevsky, or the book of Engel and Stackel (1895), which in-
cludes selections from the work of Wallis, Saccheri, Lambert, Gauss, Schweikart,
and Taurinus.

Among more recent texts, the books of Wolfe (1945) and Greenberg (1993)
have very readable accounts of the development of non-Euclidean geometry.

Section 34. The results on Saccheri quadrilaterals are due to Saccheri (1733),
except that he used continuity arguments in the proof of dividing all geometries
into three cases (34.7). A proof of this theorem without using continuity was first
given by Lambert (see his work in Engel and Stackel (1895), esp. Section 57, p.
187). The present proof of the key proposition (34.4) is due to Bonola (1955),
Section 14.

The theory of limiting parallel rays is originally due to Gauss (Werke (1870-
77), vol. 8, pp. 202-209), but there was a gap in his proof of transitivity (34.11),
because you cannot assume of three nonintersecting lines that one is in between
the other two (cf. Moise (1963) Section 24.2). This gap is filled by (34.12).

Section 35. Theorem (35.2), that the semielliptic case (Saccheri’s hypothesis of
the obtuse angle) is impossible, was first proved by Saccheri (1733). The present
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proof is the correct part of the proof given by Legendre (1823) for his Proposi-
tion 19, Book 1, in which he claimed to show that the angle sum in any triangle
is equal to 2RA. The last part of his proof used an untenable limit argument.

The example of a semielliptic plane (Exercise 34.14) is essentially the same
as an example given by Dehn (1900) of what he called a non-Legendrean geom-
etry, since it did not satisfy the conclusion of {35.2).

Section 36. The main ideas for the proof of the non-Euclidean Bolyai-Gerwien
theorem (36.6) are already present in Gerwien's second paper of (1833), in
which he treated the case of spherical polygons. The full treatment without the
use of Archimedes' axiom is due to Finzel (1912). The unwound circle group is
my invention. While Finzel must have had something like this in mind, he did
not make explicit in what group his area function took its values.

Section 37. According to Max Simon (1906), p. 93, the notion of circular inver-
sion first appears in the work of Poncelet, tollowed by Steiner, Quetelet, Mag-
nus, and Pliicker, all in the first half of the nineteenth century. Since then it has
become a useful standard technique.

Constructions with compass alone were studied by Mascheroni (1797), who
proved that compass alone suffices to carry out any construction possible with
ruler and compass (Exercise 37.26).

The cross-ratio occurs in Pappus (1876), Book VII, Proposition 129, except
that instead of a ratio of ratios, which could not be expressed in the language of
that time, it was a proportion between the rectangle AP - BQ and the rectangle
AQ - BP. This proposition easily implies the invariance of cross-ratio under pro-
jection (Exercise 37.14).

Section 39. A note on the consistency of non-Euclidean geometry. The discov-
erers of these geometries, Gauss, Bolyai, and Lobackevsky, seem to have been
convinced of the existence of these geometries by the extensive theory they de-
veloped and its internal coherence. Lobachevsky also noted that the formulas of
hyperbolic trigonometry could be obtained by taking the formulas of spherical
trigonometry for a sphere whose radius is imaginary.

Still, a rigorous proof of consistency (or at least consistency relative to Eucli-
dean geometry) is best made by producing a model. Credit for the first such
model goes to Beltrami (1868), who found that the geometry on surfaces of con-
stant negative curvature in 3-space behaves like a hyperbolic plane. Beltrami
seems also to have been aware of the several representations of hyperbolic ge-
ometry in the Euclidean plane, used later by Klein and Poincaré. Klein preferred
the “projective” model, where the plane is represented by the points inside a
fixed circle, and the lines by chords of Euclidean lines in that circle. This gives
the most direct connection with the projective metric of Cayley, and allows one
to use the powertul methods of projective geometry.
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Poincare (1882), on the other hand, was led through his investigations of
automorphic functions to a conformal model using the points of the Euclidean
upper half-plane, in which the lines become half-circles orthogonal to the x-axis.
This model can be easily transformed into the model we use, whose points are
the interior of a circle, and whose lines are segments of circles orthogonal to the
fixed circle, which was developed extensively by Carslaw (1916).

For references, see Bonola (1955), Poincaré's Science and Hypothesis (1905),
and Klein's Nichteuklidische Geometrie (1927).

We chose the Poincaré model for this book because it can be developed
directly from Euclidean geometry using inversion in circles, and because it
seems the most direct and elementary approach. We could not have developed
the Klein model fully without a considerable excursion into projective geometry,
which would extend beyond the scope of the present book.

Exercise 39.22. The theorem that the medians of a triangle meet in a point is
still true without the hypothesis of a circumscribed circle, but the proof, using
projective geometry, is more difficult. See Greenberg (1993), p. 277, also Baldus-
Lobell (1953), p. 102, Liebmann (1923), p. 22. There is a proof in neutral geom-
etry using the calculus of reflections (Exercise 43.15).

Some authors call the example of Exercise 39.28 a half-elliptic plane, because
any two lines have either a common point or a common orthogonal. However, 1
find this terminology misleading, because this plane is semihyperbolic, not
semielliptic.

The example (Exercise 39.31) of a plane in which not every segment is the
side of an equilateral triangle is new, although Pambuccian (1998) has in-
dependently found a similar example.

Section 40. The axiom (L) was proposed by Hilbert in his article “A new devel-

opment of Bolyai-Lobachevskian geometry,” reprinted as Appendix III to his

Foundations of Geometry (1971). This article also contains the proofs of (40.5),

existence of a common perpendicular, and (40.6) existence of the enclosing line.
The proof suggested in Exercise 40.14 is due to Liebmann (1923), p. 31.

Section 41. The construction of the field of ends (41.2), (41.3), and (41.4), to-
gether with the equation of a line (41.6) is taken from Hilbert's article “A new
development .. ." cited above. After he has verified the field axioms, he says that
“the construction of the geometry poses no further difficulties” (p. 147).

In the remainder of the section we have worked out various applications of
Hilbert's field. The proofs of (41.9)-(41.13), using the multiplicative distance
function (41.7) to avoid the real numbers, are new.

Bolyai's parallel construction first appears in Bolyai (1832), Section 34. There
are several different proofs in the literature:

(a) proofs using the relations between right triangles and quadrilaterals with
three right angles (called Spitzecke by Liebmann), and using hyperbolic trigo-
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nometry. See Greenberg (1993) p. 413, Bonola (1955), App. 111, and Liebmann
(1923) p. 35.

(b) a proof using a prism in hyperbolic 3-space —Bonola (1955), App. I1L.

(c) a purely geometric proof using the Hjelmslev midline theorem, due to
Liebmann: See Carslaw (1916) p. 73 or Wolfe (1945) p. 95.

(d) proofs in the Klein model, using the projective geometry of the ambient
plane: Greenberg (1993) p. 269; Baldus—Laobell (1953) p. 93.

Section 42. The formulae of hyperbolic trigonometry (42.2) and (42.3) are in
Lobachevsky (1914), pp. 38, 41. The hyperbolic law of sines and law of cosines
(Exercises 42.6, 42.7c¢) are in (loc. cit.) p. 44.

Our derivation of these formulae directly trom Hilbert's field of ends, and
independent of the real numbers, is, as far as I know, new, except that Szasz
(1953) has derived equivalent formulae using the isomorphism of the hyperbolic
plane with the Poincaré model.

Bolyai, in his Science of Absolute Space (1832; English translation in Bonola
(1955)), Section 43, studied the area of a circle, and recognized that it could be
“squared” or not, depending on the arithmetic properties of the number A/x.

Section 43. The characterization of hyperbolic planes (43.3) is a natural conse-
quence of the ideas set forth in Hilbert's “Neue Begrundung ..." article (Appen-
dix 111 of Foundations (1971)). It gives a direct and elementary proof of a result
that otherwise could be derived only as a consequence of the much deeper the-
orem of Pejas (1961). We have reformulated Pejas's theorem somewhat for clar-
ity. To understand the development of the ideas leading to Pejas's theorem is
tantamount to reviewing the entire history of the role of projective geometry in
the foundations of elementary geometry. Some useful references are Greenberg
(1979), the comments of Bachmann (1959) pp. 25-26, running comments in
Hessenberg-Diller (1967), Dehn's appendix to Pasch-Dehn (1976), and the en-
cvclopedia article of Enriques (1907-10).

Section 44. The picture of the five regular solids at the beginning of this section
is from Kepler, Harmonices Mundi (1619). Reprinted courtesy of the Bancroft
Library of the University of California at Berkeley.
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List of Axioms

SEraMssssIEsstIEEIsssR s R s

11-13 incidence axioms (Section 6)

P Playfair's axiom (Section 6)

B1-B4 betweenness axioms (Section 7)

C1-C3 congruence for line segments (Section 8)
C4-C6 congruence for angles (Section 9)

E circle-circle intersection (Section 11)

A Archimedes' axiom (Section 12)

D Dedekind’s axiom (Section 12)

Z de Zolt'’s axiom (Section 22)

L existence of limiting parallel rays (Section 40)

A Hilbert plane (Section 10} is a geometry satistying (11)-(13), (B1)-(B4), and (C1)-
(CB).

A Euclidean plane (Section 12) is a Hilbert plane satisfying (P) and (E).

A hyperbolic plane (Section 40) is a Hilbert plane satisfying (L).

A Hilbert plane is semi-Euclidean, semielliptic, or semihyperbolic (Section 34) according
as the sum of the angles in a triangle is =2RA, >2RA, or <2RA.

The Cartesian plane (Section 14) over a field F is the usual analytic geometry on the
set 2.

The Poincaré model (Section 39) over a field F is the non-Euclidean geometry on the
set of points inside a fixed circle.

For other axioms, acronyms, and definitions, see the Index.
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Index of Euclid’s
Propositions

Post. 1 2,18, 82 118 101, 103, 459
Post. 3 2, 18, 82 119 101, 459
Post. 4 95 1.20 101, 103, 452, 459
Post. 5 5, 20, 38-40, 68, 112, 148, 173, 205-304  1.21 101

1.22 31,102, 109, 110, 111, 147, 459
Com. Not. 1 82, 91 123 102
Com. Not. 2 84, 91 1.24 102, 451, 459
Com. Not. 3 85, 96 125 102
Com. Not. 4 34, 82 1.26 (ASA), (AAS) 36, 102
Com. Not. 5 4, 85, 195, 201 1.27 38,102

1.28 38, 102
1.1 19, 21, 97, 110, 458 1.29 38,113
1.2 20,97 130 113,119
1.3 97 131 102,113
1.4 (SAS) 2,14, 31, 32, 34, 92, 97, 148 1.32 8,113, 298, 304
15 8, 14,97 133 113
1.6 14,98 1.34 52,113
1.7 15, 35, 96, 99 1.35 40, 114, 196, 198, 202, 204, 210
1.8 (SSS) 33,99 136 114, 202, 210
1.9 21,99 1.37 29, 41, 114, 196, 202, 210, 219, 328, 329
110 22, 100 1.38 114, 203, 210
111 100 1.39 114, 196, 203, 210
112 101,111 1.40-45 114, 203, 210
.13 93,101 146 19, 114, 300
.14 101,103 1.47 (Pythagorean theorem) 3, 8, 13, 19, 37, 42,
115 38, 93,101 114, 140, 178, 203, 210
.16 36, 38, 101, 298, 319, 320, 459 by dissection 213, 217-219

1.17

101, 320

148 114, 196, 203, 210
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506 Index of Euclid’s Propositions

IL1-4 114,210
IL5 46, 114, 210

IL6 46, 114, 210

IL7-10 114, 210

IL11 45, 114, 183, 203, 210
.12 114, 210

113 114,185, 210

IL14 114, 203, 210

nri-19 111

IIL20 114

IIL21 8, 55, 114

IIL.22 114

IIL.23-30 114, 157

IIL31 114

IIL.32 114, 180

.33 114

IL.34 114

II1.35 114, 180, 203, 210

IIL36 36, 47, 114, 180, 203, 210, 336
non-Euclidean analogue 370, 414

IIL37 47, 114, 203, 210, 337

V.1l 115
V.2 115,116

V.3 115

IV.4 51,111, 115, 175, 382
IV.5 51,115, 388

IV.6 116

IV.7-9 115

IV.10 45, 115, 183, 203, 210
IV.11  45-50, 115, 250, 252
IV.12-14 115

V.15 12,112, 115, 250
IV.16 115, 250

V.Def 4 115, 167
V.Def. 5 166

VI1 178, 212

V1.2 9, 167,177,178
VI3 178, 181

V4 175,178

VI5 177,178

VLG 178

VI8 178,179
VI.9-13 178
VI.14-31 178, 212

X.1 115
X. 118, 282

Xl.Definitions 438, 445
XI1.20 4539

X121 443, 450

X1.28 226, 227
XI1.29-31 277

XI1.39 227

XIL5 228, 230, 231
XIL7 229

XIILLS 127
XIL13-17 439
XIIL.18 441




oo, See infinity
(1. See Hilbert's field
. See pi
A,. See alternating group
2ASA (double-side-angle-side), 53
28AS (double-side-angle-side), 59
2558 (double-side-side-side), 59
AL See Archimedes' axiom
AAA (angle-angle-angle), 316
AAL (angle-angle-limit), 377
AAS (angle-angle-side), 36
abelian group, 232

ordered, 205, 212, 326, 327
absolute length, 366, 380
abstract fields, 128-135
abstract geometry, 415
accuracy, 22
acute angle, 141

hypothesis of, 307, 311
addition

of angles, 93

of ends, 390, 420

of figures, 41

of line segments, 82, 84, 88, 168
additive distance function, 363, 402, 403
additive group of field, 333, 401
affine plane, 71-73, 130

number of points, 72
alchemy, 163, 221

Index

algebra of areas, 43, 46
algebraic numbers, 147, 281
algebraic topology, 450
Alhazen, problem of, 278
ALL (angle-line-line), 384
alternate interior angles, 38
alternating group, 472, 475
altitudes of triangle meet, 52, 54, 55, 58
in Cartesian plane, 119
in hyperbolic plane, 399
in neutral geometry, 387, 430
in Poincare model, 369
in semi-Euclidean plane, 319
altitudes of triangle, 51, 63, 487
analytic geometry, 118, 415, 427, See also
hyperbolic analytic geometry
analytic proof
of altitudes of triangle, 119
of pentagon, 125
of theory of area, 210
angle bisector, 11, 21, 23, 111, 181, 349
by Hilbert's tools, 103
existence, 100
generalized, 317
angle bisector, external, 382
angle bisectors meet, 16, 51, 111
by calculus of reflections, 432
in Hilbert plane, 318
in hyperbolic plane, 382, 387
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angle of parallelism, 296, 364, 374, 375, 380, 396

of sum of segments, 411
angle sum of triangle, 8, 12, 113, 162, 295, 304

310, 319, 374. See also (1.32) in Index of
Euclid's Propositions

in Archimedean plane, 320, 325

in hyperbolic plane, 376

in Poincare model, 366

infinitesimally close to 2ZRA, 431
angle trisector, 277
angle, 8, 141, 326

acute, 141

between circles, 336

cosine function, 403

definition of, 28, 77

enclosing line of, 378

exterior, 101

in a semicircle, 16, 111, 318

not rational multiple of m, 237-239

obtuse, 141

of contingency, 111

quintisection of, 277

radian measure of, 396

right, 141

sine function, 403

supplementary, 92, 94

tangent function, 403

tangent of, 141, 146, 396, 399

transporter of, 82, 91

trisection of, 167, 243, 260
angle-angle-angle theorem, 316
angles

addition of, 93

alternate interior, 38

congruence of, 90-96

difference of, 96

equality of, 32

group of, 326, 327

ineguality of, 94

sum of, 12, 91

vertical, 38, 93
antipodal point, 473
antiprism, 436, 460, 466
Apollonius of Perga, 58, 61, 347
Apollonius, problem of, 250, 260, 346-355
apply one figure to another, 31
Archimedean geometry, 115
Archimedean Hilbert plane, 425
Archimedean neutral geometry, 319-326
Archimedean ordered field

is subfield of R, 139

Archimedean solids, 436, 460, 461
Archimedes' axiom, 4, 70, 115, 158, 167

for a field, 139

for angles, 319

implies Aristotle's axiom, 324

in Cartesian plane, 139

in dissections, 215

in Poincare model, 363

in theory of area, 204

independence of, 161

used in exhaustion, 228
Archimedes, 1, 52, 56, 60, 270, 278

approximation of m, 222, 224
area function, 40, 42

is additive, 207

unigueness, 211
area, 2, 40-43, 113, 114, 195-239

algebra of, 43

as integral, 40, 221

Euclid's theory of, 195, 196, 210

function, measure of, 205-212

in construction of pentagon, 45

in semielliptic plane, 333

independent of triangulation, 210

measure function, 326, 328

non-Euclidean, 326-333

of a figure, 205

of circle, 221, 333, 407, 413, 414

of isosceles triangle, 332

of rectangle, 40, 196

of right triangle, 408, 412

of Saccheri gquadrilateral, 333

of triangle cut by median, 333

of triangle, 40, 196, 206, 207

properties of, 196

used for similar triangles, 167
Aristotle's axiom, 297, 302, 324, 380, 412, 431,

432

arithmetic of ends, 388-403
arithmetic of line segments, 2, 165-175
Artin, Emil, 147, 248, 427
ASAL (angle-side-angle-limit), 317, 376
ASL (angle-side-limit), 317
ASS (angle-side-side), 16
associative law of multiplication, 172
Atalanta Fugiens, 163
automorphism of field, 282
automorphism of geometry, 69
automorphisms, group of, 69
axiom. See also postulate

as existence, 82
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hyperbolic, 70, 311

Lotschmnitt, 431

of Archimedes, 70, 115

of Aristotle, 297, 302

of Bolyai, 302, 303

of Clairaut, 299, 302

of Clavius, 299, 302

of de Zolt, 201-206, 210, 211

of Dedekind, 70, 115

of Gauss, 332

of Legendre, 322, 324

of Playtair, 300, 301

of Simson, 300, 302

of Wallis, 301, 302

rectangle, 162

right triangle, 301
axiomatic geometry, 118
axiomatic method, 2, 13, 27-43
axioms of congruence, 81-96

in Cartesian plane, 142
axioms, 2, 29

based on rigid motions, 155

categorical, 70

complete systern of, 71

consistent, 70

independence of, 69

model of, 67

of betweenness, 73-81

of incidence, 66-73

of projective plane, 71

Bl-4. Sge axioms of betweenness
Bachmann, Friedrich, 155, 423, 427, 431
Ball, W. W. Rouse, 36
Bancroft Library, 261, 447, 494
beauty in proof, 50
Beltrami, E., 305, 492
betweenness, 34-37, 73-81, 98, 112

in Cartesian plane, 135-140

in Poincaré model, 357

over an ordered field, 137

used in exterior angle theorem, 101
bicapped pentagonal antiprism, 459
bicapped square antiprism, 456
bidiminished icosahedron, 464
Billingsley, Henry, 1
bilunabirotunda, 469, Plate XIX
Birkhoff, George David, 31, 166
Bischof, Anton, 303
bisect angle, 21
bisect segment, 22, 23

blemishes in Euclid, 304, 305

Bolvai's axiom, 302, 303

Bolyai's formula, 296, 364, 396, 402

Bolyai's parallel construction, 388, 396-398, 411,
414, 493

Bolyai, Farkas, 302, 332

Bolyai, Janos, 195, 295, 305, 326, 373

Bolyai-Gerwien theorem, 213, 215, 230, 330

Bonnycastle, John, viii

Burnside's theorem, 275

C. See complex numbers
C1-6. Sge axioms of congruence
calculus of reflections, 415, 427-430, 432, 433
Callahan, J. J., 304
Camerer, Johann Wilhelm von, 347
Campanus, Giovanni, 45, 261
Cardano's formula, 272
Cardano, Girolamo, 272
Cartesian plane, 2, 30, 33
{A) plus (E) implies, 426
axioms of congruence, 142
circle-circle intersection, 144
configurations in, 132-135
congruence in, 140-148
Desargues's theorem, 133
ERM in, 151
Hilbert’s axioms in, 148
incidence axioms in, 129
inversion in, 334
is Euclidean, 153
is Hilbert plane, 153
non-Archimedean, 198, 325
over @, 143
over a feld, 71, 72, 129
Pappus's theorem, 131
rational, 89
real (see real Cartesian plane)
rotations in, 156
used for Poincaré model, 356
casus irreducibilis, 273, 491
categorical axioms, 70, 115
Cauchy's rigidity theorem, 435, 445, 448, 450-
455
Cayley's theorerm, 474
CCC, 347, 352-355
center of circle, 88, 104
18 unique, 104
center of group, 479
centroid, 53, 54, 472
Ceva's theorem, 182, 185
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Ceva, Tommaso, 306
change of variables, 130
characteristic of field, 131
characteristic polynomial, 472
characterization of Hilbert planes, 415-433
chord of circle, 124, 180
circle group
isomorphic to group of rotations, 402
of field, 156, 157, 401
circle-circle intersection, 108, 112
equivalent to (LCI), 110, 145, 423, 431
in Cartesian plane, 144
in hyperbolic plane
inn Poincaré model, 362
circle
area in hyperbolic plane, 407, 413, 414
area of, 221, 333
circumscribed, 25
definition of, 27, 88, 104
exterior is segment-connected, 116
exterior not segment-connected, 433
given 2 points and circle, 351
given 2 points and line, 350
given point and 2 lines, 350, 351
given three circles, 353
in Poincaré model, 361
infinite number of points on, 88, 147
inscribed, 24
meets circle in two points, 107
nine-point, 51, 57, 59
not contained in polygon, 433
orthogonal, 25
squaring of, 163, 195, 221-225
tangent to 3 circles, 250
tangent to circle, 61, 62, 106, 111
tangent to line, 25, 43
tangent to two lines, 44
triangle inscribed in, 47
circles
determined by three conditions, 346-355
intersection of, 29
radical axis of, 182
circular inversion, 295, 334-346, 366
circumcenter, 51, 54
circumference of circle, 413
circumscribed circle, 25, 116, 302, 347, 348
does not exist, 162
circumscribed hexagon, 414
circumscribed polygon, 222, 224
circumscribed polvhedron, 439
Clairaut's axiom, 299, 302

Clairaut, Alexis Claude, 299, 281
classical construction problems, 241-250
Clavius's axiom, 299, 302
Clavius, Christoph, 298, 306, 340
Chp. See cyclic group
coincide, equal things, 34
collapsible compass, 20
Commandino, Federigo, 289, 297
commensurable magnitude, 117
commaon notions, 28, 29, 82

from axioms, 85
common orthogonal line, 366, 377, 384, 386, 401
commutative law of multiplication, 170
compass, 20, 21

collapsible, 20

rusty, 25, 26

used alone, 346
complement of a figure, 204
complete axiom system, 71
complex conjugation, 276
complex numbers, 251, 282, 342

cannot be ordered, 137
conchoid, 260, 263, 264
conclusion, 14
condition (), 142
condition (#+), 144
condition (xd), 372, 425
configurations

construction of, 134, 135

in Cartesian plane, 132-135
conformal transformation, 338
congruence, 28, 34

as equivalence relation, 82

defined by rigid motions, 154

in Cartesian plane, 140-148

in Poincare model, 358, 360

of angles, 90-96

of line segments, 81-90

of segment of circle, 157

of solid angles, 439

of sums, 84

of triangles, 35
conics, intersection of, 260, 279
conjugacy class, 474
conjugate elements of group, 474
connected. See segment-connected
consistency of non-Euclidean geometry, 355
consistent axioms, 70
constructible field, 146, 147
constructible figures, 19
constructible numbers, 242, 246, 259, 372, 409
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by gquadratic extensions, 242

criterion for, 245
constructible point, 242
constructible polygons, 250, 258, 276
construction, 14, 19

angle bisector, 23

as existence theorem, 99-101

center of circle, 24

fixed circle and ruler suffice, 194

Galois group of, 292

inscribed circle, 24

midpoint of segment, 23

of 11-gon, 277

of 13-gon, 269

of 17-gon, 250-259

of 19-gon, 277

of circular inverse, 335, 344

of configurations, 134, 135

of heptagon, 264-269

of inverse, 343

of limiting parallel, 396-398

of nonagon, 269

of pentagon, 43, 45-51, 184, 252

of perpendicular, 185

of regular polygons, 241

of square, 51

of triangle, given medians, 59

origami, 249

parallel line, 24

perpendicular line, 23, 24

reproduce angle, 24

tangent to circle, 24

with auxiliary curve, 260

with compass alone, 343, 346

with compass and marked ruler, 259-270, 274,

276-280

with Hilbert's tools {see Hilbert's tools)

with one-inch ruler, 25

with parabola, 278

with ruler alone, 185, 344

with ruler and compass, 242

with ruler and dividers, 186

with ruler, compass, and angle

trisector, 277

with ruler, given fixed circle, 192-194

with rusty compass, 25, 26
content, 40, 43, 113, 195

in non-Archimedean plane, 198
continuity, 30, 116, 426, 488

used by Saccheri, 307
continuous function, 30, 159

convex polygon, 451
convex polyhedron, 442, 450, 451, 453
convex set, 80, 111
convex subgroup, 424, 432
convexity, 435
coordinates
change of, 130
introduction of, 186-194
of a line, 394
cosh function, 413
cosine function, 124, 126, 184, 237, 403, 405
triple angle formula, 244
cosines, law of, 125, 185
coterminal rays, 312
counting steps, 20
Cromwell, Peter R., 455
cross-ratio, 339-345, 358, 367, 399, 402, 492
defines distance function, 363
crossbar theorem, 77, 100
cube root, 241, 248
with marked ruler, 262, 270
cube, 435, 438, 439, 444, 446
cube, duplication of, 243, 260
cubic equation, 241, 243, 244, 248, 270-280, 457,
459, 491
by trisecting angle, 271
Cardano's method, 272
discriminant of, 273, 279
for heptagon, 266-268
irreducible, 278
with three real roots, 278, 279
cubic field extension, 279
cubic resolvent, 273, 274, 293
cuboctahedron, 460
curvature of space, 33
cyclic group, 436
cyelic quadrilateral, 55, 57, 58, 60-62, 170, 174,
212, 430
cyclotomic extension, 237, 291
cyclotomic field, 291, 293
cyclotomic polynomial, 238, 251, 253, 290

D. See Dedekind's axiom
de Zolt's axiom, 201-206, 210, 211, 328
Dedekind cut, 167
Dedekind's axiom, 31, 70, 115
avoid use of, 116
for a field, 139
gives existence of limiting
parallels, 317
implies (E), 116
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Dedekind's axiom (cont.)
implies Archimedes' axiom, 116, 140
in Cartesian plane, 139
in Poincare model, 363
Dedekind, Richard, 4, 167, 488
defect
as measure of area, 328
at vertex of polyhedron, 450, 458
is additive, 311
of triangle, 311, 324, 325, 326, 327
definitions, 27, 28
degree measure of angle, 166
degree of field extension, 242, 280, 281
degree three field extension, 248
Dehn invariant, 232, 233, 234, 235, 238
of cube, 233
of octahedron, 238
of tetrahedron, 234
of triangular prism, 234
Dehn, Max, 195, 230, 231, 311
deltahedra, 455-458
Desargues’s theorem, 133, 183
Descartes's theorem, 450, 455, 458
Descartes, René, 13, 118, 120, 121, 122, 123, 171,
273
diagonal of quadrilateral, 55, 80
diagonal of square incommensurable, 117
difference of angles, 96
difference of line segments, 85
dihedral angle, 233, 435, 438, 443, 446
of polyhedron, 448, 453
dihedral group, 293, 436, 470, 474, 477, 479
dilation, 338, 341
diminished icosahedron, 464
direction of lines, 68, 303
directrix, 247
discriminant of cubic equation, 273, 279
disphenocingulum, Plate XVII
dissatisfaction with Euclid, 304
dissection, 195, 212-221
Dudeney's, 220
equilateral triangle to square, 219, 220
of solid figures, 227
of tetrahedron, 231
of triangular prism, 229
of triangular pyramid, 228, 230
parallelogram to rectangle, 214
pentagon to square, 220
possible if same area, 215
Pythagorean theorem, 217-219
rectangle to rectangle, 214, 215

rectangle to square, 216, 219
rectilineal figure to square, 217
square into 3 squares, 219
square into acute triangle, 220
tetrahedron to cube impossible, 236
triangle to parallelogram, 213
triangle to square, 221
triangle to trapezoid, 220
using translations only, 220, 221
distance function, 87, 89, 90, 152, 362, 363, 364,
365
Euclidean, 140, 143
multiplicative, 296, 395
distance-squared function, 141
distance
absolute value, 89
between parallel lines, 297, 325, 326
in Cartesian plane, 87, 89, 90
signed, 391
dividers, 102, 185
divine proportion, 447
division ring, 133
division of line segments, 171
D,,. See dihedral group
dodecahedron, 435, 438, 439, 440, 444, Plate XIX
Donne, John, 221, 294
double of a triangle, 52
dual solid, 446
Dudeney, Henry Ernest, 220
Dudley, Underwood, 23
duplication of cube, 243, 247, 260, 271
impossible, 243
dyadic rational number, 333, 396, 409

E. See circle-circle intersection
adge of polyhedron, 438
eigenvector, 472
Einschiebung, 490
Eisenstein's criterion, 255, 292
elementary polyhedron, 464
elliptic geometry, 311
enclosing line, 367, 378, 384
end of graph, 449
end, 378, 390

behaves like a point, 385

definition of, 316, 374

of a ray, 296

rotation around, 402
endpoint of segment, 74, 79
ends

arithmetic of, 388-403
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field of, 391
multiplication of, 391
sum of, 390
Engel's associated triangles, 409-411, 414, 415
Enrigues, Federigo, 168
enunciation, 14
equal content, 113, 195, 326
as equivalence relation, 200
definition, 197
does not imply equidecomposable, 198
equivalent to equidecomposable, 199
if same area, 211
implies equal area, 206
implies equidecomposable, 216, 332
of triangles, 202
equality of angles, 32
equality, definition of, 28
equation of a point, 394
equations, theory of, 241
equiangular figure, 437
equiangular triangles are similar, 175
equicomplementable figures, 489
equidecomposability is transitive, 199
equidecomposable figures, 197, 199, 213, 326. See
also dissection
have same area, 206
equidecomposable triangles, 330
eguidistant curve, 329, 369
equidistant lines, 68, 298
equilateral figure, 437
equilateral pentagon over field, 147
equilateral triangle, 19, 30
by origami, 249
construction, 110
existence of, 97, 147, 184, 431
in square, 126
inscribed, 50
may not exist, 373
side related to angles, 366, 407, 411, 414
with 457 angles, 368
with given angle, 366
equivalent by dissection, 213
Erlanger Programm, 34, 149
ERM. See existence of rigid motions
error in construction, 22
Euclid’s Propositions proved from Hilbert's
axioms, 97-102
Euclid's Elements, 1, 7-18, 27, 63, 97, 112, 165-
167, 461 -487
constructive approach, 18
in English, 109

in French, 15
in German, 281
in Greek, 83
in Italian, 289
in Latin, 32, 84, 261
Euclid, 1, 9
Euclidean distance, 87, 140, 143
Euclidean field, 144-146, 391
non-Archimedean, 161
Euclidean geometry, 39
based on Hilbert's axioms, 112
Euclidean metric, 87
Euclidean plane, 112-116, 153
as base for Euclid's Elements, 112
Euclidean triangle, 311
Eudoxus, 1, 4, 228
Euler ¢ function, 238, 258, 290
Euler characteristic, 448
Euler line, 51, 54, 59, 488
Euler's theorem, 448-450, 458
Euler, Leonhard, 72
even permutation, 471
Eves, Howard, 9
exactness, 22
excess of a triangle, 333
exercises, note on, 13
exhaustion, 4, 115, 195, 222, 228
existence of rigid motions, 149
equivalent to (C6), 154
implies SAS, 150
in Cartesian plane, 151
in Hilbert plane, 153
in Poincaré model, 359
in spherical geometry, 318
exposition, 14
exterior angle theorem, 101, 376
exterior angle, 36, 321. See also (1.16) in Index of
Euclid's Propositions
exterior
of circle, 105, 116
of polygon, 205
of triangle, 80, 96
external angle bisectors, 382
extreme and mean ratio, 46, 51, 114, 183

tace angle, 439, 450

face of polyhedron, 438

face-regular polvhedron, 436, 464-467
feet of altitudes, 63

Fermat number, 259

Fermat prime, 259, 333
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Fermat, Pierre, 259
field extension, 241
algebraic, 283
by angle trisection, 271
by cube root, 271
by square root, 271
cubic, 279
degree of, 242, 280, 281
finite, 280-294
isomorphic, 282
normal, 285, 286
of degree 2, 3, 4, 245, 248, 271
of marked ruler construction, 274
quadratic, 252-256
totally real, 147
field
abstract, 118
additive group of, 333, 401

associated to hyperbolic plane, 388

Cartesian plane over, 71, 72, 129
circle group of, 156, 157, 401
condition (), 142

condition (##), 144

condition (#d), 372
constructible, 146, 147, 372
definition, 128

Euclidean, 144-146, 391

finite, 157

fractional linear transformation, 401

generated by elements, 280
Hilbert's, 145, 147, 148
multiplicative group of, 333, 401
non-Archimedean, 158-163
of characteristic 0, 2, 133, 136
of characteristic 2, 131
of constructible numbers, 409
of ends in hyperbolic plane, 416
of ends of Poincare model, 418
of ends, 391
of Laurent series, 163, 372
of line segments, 168
of rational functions, 158, 163
of real numbers, 119
of segment arithmetic, 179, 206
ordered, 2, 117, 135-140
Pythagorean, 142, 145
skew, 132, 133, 140
fifth postulate. See parallel postulate
fifth roots, 277
figure
area of, 205

as union of triangles, 197
complement of, 204
definition, 196
interior of, 196
figures
equidecomposable, 197, 199, 326
of equal content, 197, 326
ordering of, 204
filling plane with triangles, 367, 368
finite element, 159
finite field extension, 280-294
finite field, 157
finite geometry, 67, 72, 73, 129
finite subgroups of SO[3), 475
finitely bounded element, 159
finitely bounded Hilbert plane, 162
Finzel, Anton, 492
five regular solids, 436-448
five-point geometry, 68
flexible polvhedron, 455
focus, 247
four elements, 435, 436
fractional linear transformation, 342, 401
frame of icosahedron, 474
Franceschini, Francesco Maria, 301
free mobility, 427
fringe mathematicians, 224
full subplane of Hilbert plane, 423-425
fundamental theorem
of algebra, 282
of Galois theory, 257, 276, 286
of projective geometry, 341

Galois group, 256, 258, 275, 276, 285-294
as permutations, 286
of constructible number, 245
of construction problem, 292
of cubic polynomial, 278, 279
Galois theory, 4, 241, 252
fundamental theorem of, 246, 257, 276, 286
Gauss's axiom, 332
Gauss, Carl Friedrich, vi, 4, 230, 241, 250, 252,
295, 305, 326, 332
generalized line, 386
generalized point, 384
generalized triangle, 387
generators and relations of group, 479
geometrical algebra, 46
geometry
Archimedean, 115
autormorphism of, 69
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axiomatic, 118
finite, 67, 72, 73, 129
five-point, 63
high school, 118
incidence, 66, 71
neutral, 97
non-Archimedean, 115, 158-163
non-Euclidean, 97
over a field, 117-163
solid, 437
taxicab, 89, 90
three-point, 67, 68
without numbers, 166
Gerling, Christian Ludwig, 230
Gerwien, P, 195
Gibbon, Edward, 194
gingerbread, 446
Gleason, Andrew, 277
glide reflection, 429
graph, 449
great circle, 318
greater than
for angles, 94
for line segments, 85
Greek text of Euclid, 83
Greenberg, Marvin Jay, 398, 432
Gregory, David, 188
group
cyclic, 436
definition of, 27
dihedral, 293, 436
of angles, 326, 327
of automorphisms, 69
of rigid motions, 34, 149, 426, 427
of rotations, 155, 156, 327, 436, 471
of segment addition, 423
of symmetries, 435
of translations, 156
ordered abelian, 205, 212
solvable, 275
symmetric, 69
symmetry, 469-4580
unwound circle, 327, 333
Gédel, Kurt, 70, 71

Hadamard, Jacques, 65

half-elliptic plane, 493

halves of equals are equal, 29, 41, 88, 204,
229

harmonic points, 342, 345

Heath, Sir Thomas L., 29, 116, 487

Henrion, Denis, 15
heptagon, 260, 264-269, 491
Hessenberg, Gerhard, 423
hexagon, 11, 12, 112
high-school geometry, 40
Hilbert plane, 96-103, 112, 305
algebraic model of, 423
Archimedean, 115, 425
calculus of reflections, 427-430
ERM holds, 153
Euclidean, 112-116, 153
finitely bounded, 162
full subplane of, 423-425
hyperbolic, 373-387
non-Archimedean, 115, 158-163
Pejas's classification, 423-427
rigid motions in, 148, 149
semi-Euclidean, 305, 311, 316, 318, 319, 425,
431
semielliptic, 311, 316, 318, 321, 425
semihyperbolic, 311, 316, 372, 425,
433
with (P) and (D) is real Cartesian
plane, 191
with (P) is Cartesian, 186, 187
Hilbert planes
characterization, 415-433
isomorphic, 416-418
Hilbert's axioms, 65
as base for Euclidean geometry, 112
as tools, 102
over a field, 128
Hilbert's field, 145, 147, 148, 248
Hilbert's hyperbolic axiom, 311
Hilbert's third problem, 195, 230-239
Hilbert's tools, 82, 102, 103, 182, 186, 248, 249,
346
constructible polvgons, 259
pentagon with, 249
ruler and dividers suffice, 186
Hilbert, David, 2, 4, 168, 230, 427, 488
history of parallel postulate, 296-304
Hjelmslev quadrilateral, 430
Hjelmslev, Johannes, 415, 426, 427
Hobbes, Thomas, 239
Holtzman, Wilhelm, 281
homogeneity, 33, 148
homology groups, 232
homotopy groups, 232
horned angle, 111
horocycle, 369, 402, 412
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hyperbolic analytic geometry, 388, 396-400
coordinates of line, 394
equation of a point, 394
hyperbolic axiom, 70, 374, 376, 377, 393
implied by (A) + (E) + (~P), 426
implies (E), 423
hyperbolic geometry, 5, 311, 373-387
is semihyperbolic, 374
law of cosines, 411
hyperbolic plane, 296, 374
(E) holds, 422
additive distance function, 402, 403
altitudes of triangle meet, 399
angle bisector of triangle, 382
angle sum of triangle, 376
area of circle, 407, 413, 414
area of right triangle, 408, 412
Aristotle’s axiom in, 380, 412
cosine function, 405
determined by field of ends, 416
distance function, 395
equilateral triangle, 407, 411, 414
existence of common orthogonal, 377
field of ends, 388
group of rigid motions, 401
horocycle, 402
introduction of coordinates, 415
isomorphic to Poincaré model, 422
law of sines, 411
measure of area function, 407
perpendicular bisectors of triangle, 383
right triangle in, 404, 406
rigid motions, 391
sine function, 405
squaring of circle, 409, 414
tangent function, 395, 399
trigonometry, 403-415
hyperbolic trigonometric functions, 413
hyperbolic trigonometry, 296, 388, 403-415, 494
hypercycle, 329, 369
hypotenuse, 42
hypothesis
of acute angle, 307, 311
of obtuse angle, 307, 311
of right angle, 307, 311
Holder, theorem of, 294

I1-3. Sge axioms of incidence

icosahedron, 435, 438, 439, 445, 455, Plate XIX
construction of, 440, 448
punched-in, 442, 450

rotation group of, 473-475, 478

symmetry group of, 478
icosidodecahedron, 462
ideal line, 386, 426
ideal point, 72, 384, 386, 426
identity transformation, 149, 155
impossible problem, 223, 224, 241
incenter, 51
incidence axioms, 66-73

in Cartesian plane, 129

in Poincare model, 356

over a field, 128-135
incidence geometry, 66, 71
independence of axioms, 69, 158, 161
index of subgroup, 473
inequality

in ordered field, 136

of angles, 94

of line segments, 85
infinite element, 159
infinite number

of parallel lines, 316

of points on circle, 88, 147

of points on line, 79
infinitesimal element, 159, 425
infinitesimal plane, 162
infinity, 342

arithmetic with, 146

as end, 390

as inverse of origin, 335

as symbol, 142

point at, 72 inscribed circle, 24, 127, 347, 349
inscribed equilateral triangle, 50
inscribed polygor, 222, 224
inscribed polvhedron, 439
inscribed square in triangle, 164
inscribed triangle, 47
inside. See interior
integral to define area, 221
interior angles, 38
interior

of angle, 34, 36, 77, 96, 141

of circle, 105

of figure, 196

of polygon, 205

of quadrilateral, 80, 81

of triangle, 77, 80, 196
intermediate value theorem, 30, 247, 457
interpretation of undefined notions, 355
intersection

of circles, 29
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of conics, 260

of figures, 197, 203

of lines and circles, 104-112
introduction of coordinates, 186-194, 415

in projective plane, 426
invariant of geometric ohject, 232
inverse

of circle, 335, 337

of line, 335

of point, 334, 335
inversion

in circle, 205, 334-346

is conformal, 338

over a Pythagorean field, 345
irrational numbers, 118, 125, 126, 166, 282
irreducible polynomial, 244, 284
isogonal conjugates, 433
isometry, 472
isomorphic models, 68
isomorphism, 89

of geometries, 187

of Hilbert planes, 416-418
isosceles triangle, 8, 35, 36

base angles equal, 97

constructed by Hilbert's tools, 102

every one is, 36

existence, 100

with base angles twice vertex, 45

jelly beans, 446, Plate XIX
Johnson, N., 436, 464
Jordan curve theorem, 205

K-line, 370

K-point, 370

K. See constructible field

K1-4 (Kirkman geometry), 72
Kepler, Johann, 436, 447, 461
Kirkman geometry, 72

Kirkman's schoolgir]l problem, 488
Kirkman, T. P., 72

Klein four-group, 291, 474

Klein model, 370, 371

Klein, Felix, 34, 149, 305, 426, 492
Kline, Morris, 71

knot in paper makes pentagon, 51

L. See hyperbolic axiom
Lambert quadrilateral, 316
Lambert, Johann Heinrich, 305
Laurent series, 163, 372

law of cosines, 125, 185, 411
law of sines, 185, 411
LCC, 347, 355
LCI. See line-circle intersection
Legendre's axiomn, 322, 324, 431
Legendre, Adrien Marie, 227, 305, 319, 322, 323,
438
Leistner, Joseph, 224, 225
length, 2, 28, 42, 165
absolute in Poincaré model, 366
in field of segment arithmetic, 175
of chord of circle, 124
of side of polvgon, 124
Lenstra, Hendrik, 127
less than
for angles, 94
for line segments, 85
limit line, 386
limit quadrilateral, 386, 401
limit triangle, 317
existence of, 386
limit, 228
limiting parallels, 295, 206, 312-319, 373, 385
construction of, 396-398
definition of, 312
distance between, 325, 326
do not exist, 372
existence of, 317, 374
in Poincare model, 363
Lincoln, Abraham, 13
Lindemann, 223
line segment, 74
definition, 140
congruence of, 81-90
line separation, 76, 79
line-circle intersection, 108, 111
equivalent to (E), 145, 186, 191, 192, 423, 431
in Cartesian plane, 144
line
coordinates of, 394
definition of, 27, 83
generalized, 386
has infinitely many points, 79
ideal, 386
in Cartesian plane, 119, 129
in interior of angle, 322, 325, 366
limit, 386
linear equation of, 67
meets circle in two points, 106
parallel to base of triangle, 44, 52, 63, 177, 185
unigue through two points, 66
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linear equation, 67
linear map of vector space, 472
linear ordering, 81
linear problem, 260
linear transformation, 130
lines, 66
cannot enclose a space, 66
orthogonal if reflections commute, 428
orthogonal, 94
parallel, 68
strictly parallel, 318
with common end, 389
LLC, 347, 352, 355
LLL (line-ine-line), 347, 349, 385
Lobachevsky, Nicolai Ivanovich, 295, 305, 373
411, 492
loop of graph, 449
Lotschnitt axiom, 431
Lovecraft, H. P., 480

magnitude, 117, 166, 167
Maier, Michael, 163
marked ruler, 4, 241, 259-270, 274
Marwvell, Andrew, 6
Mascheroni, Lorenzo, 346, 492
measure of area function, 195, 199, 205-212,
326, 328, 407

existence of, 206
median of triangle, 59
medians of triangle meet, 52, 53, 319, 371, 433,

487, 493

Menelaus's theorem, 180, 262
method of exhaustion, 115, 195
metric plane, 427
metric, Euclidean, 87
midline, 385

of limit triangle, 317

of quadrilateral, 306, 309

of triangle, 310, 329
midpoint of segment, 88

by Hilbert's tools, 103

existence, 100
Millay, Edna St. Vincent, 50
minimal polynomial, 259, 283, 292
Miquel point, 61
Miquel, A., 61
mirror image, 227, 230, 231, 451
mirror symmetry. Sge symrmetry, mirror
model

isomorphic, 68

of axiom systern, 67, 95

of betweenness, 78
of congruence axioms, 87, 89, 90
over a field, 128
Poincare, 70
standard, 88, 90
unigue, 70
models of axioms, 95
models of polyhedra, 446
modern algebra, 241
modular Hilbert plane, 425, 431
Monge, Gaspard, 342
multiplication
of ends, 391, 421
of line segments, 168, 170, 171
multiplicative distance function, 296, 363, 364
365, 396, 401, 493
multiplicative group of field, 333, 401

IN. 8ee natural numbers
natural numbers, 136
negative x-axis, 136
nested square roots, 124-126
net on a polyhedron, 454
net-face, 454
neusis, 270, 490
neutral geometry, 5, 39, 97, 304-319
Archimedean, 319-326
definition, 305
theory of parallels in, 312-319
Nicomedes, 263, 264
nine-point circle, 5, 51, 57, 59, 488
non-Archimedean field, 158-163
non-Archimedean geometry, 115, 158-163, 315
existence of limiting parallels, 398
non-Archimedean universe, 161
non-Euclidean area, 326-333
non-Euclidean geometry, 97, 295, 304, 305
existence, 355
hyperbolic, 373-387
Klein model, 370, 371
non-Archimedean model, 161, 162
Poincare model, 356
semielliptic, 318
semihyperbolic, 372
non-Euclidean Pythagorean triple, 414
non-Euclidean theorem proved by Euclidean,
370
non-Euclidean triangle, 311
non-Legendrean geometry, 311, 492
non-modular Hilbert plane, 425
nonagon, 269
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noncollinear points, existence of, 66

nonoverlapping figures, 196, 197, 204
nonuniform polyhedron, 464

norm, in field extension, 157

normal field extension, 256, 285, 286
normal subgroup, 474

number theory, 117

obtuse angle, 141, 213
hypothesis of, 307, 311

octahedron, 435, 438, 439, 444, 446, 455
rotation group of. 478, 480
symmetry group of, 478

one-inch ruler, 25, 62, 74, 110, 182, 199, 202, 210,

213, 220, 259, 398, 426
orbit under group action, 473
order of group, 245
order, 73
for angles, 94
for line segments, 86
linear, 81
of four points on line, 79
ordered abelian group, 205, 212, 326, 327
of segment addition, 423
ordered field, 2, 117, 165, 135-140
Archimedean, 139
betweenness over, 137
constructed from positive elements, 173
definition, 136
finite element, 159
inequality in, 136
infinite element, 159
non-Archimedean, 158-163
of line segments, 173
three associated groups, 333
ordered set, 212
ordering
of angles, 34
of points, 34
on set of figures, 204
on surd field, 137, 140
orientation, 471
origami, 249, Plate XIX
equilateral triangle, 249
pentagon, 249
triangle given three sides, 250
origin of a ray, 77
origin, 119, 187
orthic triangle, 58
orthocenter of triangle, 54, 154
orthogonal circles, 336

orthogonal linear transformation, 472
orthogonal lines, 94

if reflections commute, 428
orthogonal. See also perpendicular
outside. See exterior

P' (affine parallel axiom), 71
P-betweenness, 357
P-circle, 361
P-congruence, 358
compared to Euclidean congruence,
363
p-group has nontrivial center, 246
P-line, 356
P-model, 356
P-point, 356
P-reflection, 359
P-rigid motion, 359
P. See Playfair's axiom
P1-4 (axioms of projective plane), 71
painting the plane, 62
Pambuccian, Victor, 432, 493
paper folding. See origami
Pappus's theorem, 62, 131, 133, 426
equivalent to commutativity, 132, 133,
429
Pappus, 58, 342, 347, 489
parabola, 247
intersected with line, 247
intersection with circle, 247
squaring of, 247
to trisect angle, 277
parallel axiom, 97
false in Poincaré model, 357
in Cartesian plane, 130
parallel lines, 38
by Hilbert's tools, 103
common orthogonal to, 366, 377
construction of, 24
cut equal segments, 59
definition, 68
distance between, 298
in Cartesian plane, 119
parallel postulate, 5, 29, 38, 39, 68
history, 296-304
independence of, 65
parallelepiped, 226
parallelism, angle of, 364, 374, 375, 380
parallelism, as equivalence relation, 72
parallelogram, 40
in the same parallels, 198
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parallels
in neutral geometry, 312-319
in the same, 40, 41
infinite number of, 316
theory of, 37-40, 113
Pascal's theorem, 426
Pasch's axiom, 74, 77
for limit triangle, 317
Pasch, Moritz, 65, 74, 426
PCC, 347, 355
Pejas’s classification, 423-427
Pejas, theorem of, 425-427
Pejas, W., 398, 415, 423, 427
Peletier, Jagques, du Mans, 32, 44, 298
pencil of limiting parallels, 369
pencil of lines, 72, 389, 401
pentagon, 5, 17
analytic proof, 125
by marked ruler, 270
by origami, 249
construction of, 43, 45-51, 127, 184
made by knot, 51

uses all of Euclid's geometry, 115, 203

using complex numbers, 251
with all right angles, 411
with Hilbert's tools, 248
with ruler alone, 194
pentagonal dipyramid, 456

perpendicular bisectors meet, 16, 51, 116, 318

by calculus of reflections, 432
in hyperbolic geometry, 368

perpendicular line by Hilbert's tools, 103

perpendicular to line, 23
perpendicular. See also orthogonal
construction of, 185
perspective triangles, 183
Petersen, Julius, 490
philosopher’s stone, 163
pi (7)
approximation of, 222-225
transcendence of, 241, 244
planar problem, 260
plane separation, 74
plane
affine, 71-73
Euclidean, 112-116
Hilbert, 96-103, 112
painting of, 62
projective, 71
seven-point, 71
Plato, 1, 9, 10, 22, 42, 296

Platonic solids, 435, 446
Playfair's axiom, 39, 112, 158, 300, 301
independence of, 161
Playfair, John, 68, 300
PLC, 347, 355
PLL, 347, 350
Poincare maodel, 70, 95, 295, 355-373
(A) plus (E} implies, 426
(E) holds, 362
absolute unit of length, 366
addition of ends, 420
analogue of 11136, 370
angle sum in, 366
betweenness, 357
circle in, 361
congruence, 358, 360
distance in, 341
equilateral triangle, 366
ERM in, 359
field of ends of, 418
horocycle in, 369
hypercycle in, 369
in virtual circle, 372, 425
incidence, 356
independent of circle chosen, 371
isomorphic to hyperbolic plane, 422
limiting parallels, 363
multiplication of ends, 421
non-Archimedean, 371
over Pythagorean field, 372
reflection of ends, 420-422
trisection of angle, 369
trisection of segment, 369
Poincare, Henri, 305, 492
point
at infinity, 72
definition of, 27, 83
equation of, 394
generalized, 384
ideal, 72, 384, 386
in Cartesian plane, 119, 129
points, 66
noncollinear, existence, 66
on same side of line, 103
pole of rotation, 475
polygon
5-sided (see pentagon)
G-sided (see hexagon)
7-sided, 260, 264-269
9-sided, 269
11-sided, 277
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13-sided, 269
17sided, 4, 241, 250258
19-sided, 277
circumscribed, 222, 224
constructible with compass and marked ruler,
276
constructible, 250, 258
exterior angles of, 16
exterior, 205
inscribed, 222, 224
interior, 205
simple closed, 204
with Hilbert's tools, 259
polyhedron, 435, 438
constructible, 441
made of equilateral triangles, 455-458
making models, 446
plane projection of, 449
regular, 446
symmetry group of, 469-480
polynormial
cyclotomic, 251
irreducible, 244
Poncelet, Jean Victor, 342
Poncelet-Steiner theorem, 194
positive elements, 159
of field, 136
of group, 205
positive x-axis, 136
Postulate 5. See parallel postulate
postulate, 18, 28, 29. See also axiom
as construction, 82
parallel, 5, 29
ruler, 2
power of a point, 181, 182
PPC, 347, 351, 355
PPL, 347, 350
PPP, 347, 348
preserved orientation, 471
primitive roots of unity, 290
prism, 226, 436, 460, 466
problem
impossible, 241
linear, 260
of Alhazen, 278
of Apollonius, 296
planar, 260
solid, 260, 279
Proclus's lemma, 297, 301
Proclus, 13, 14, 39, 42, 95, 296, 297
product of line segments, 123, 170

projective geometry, 341, 494
projective plane, 71, 311, 386, 426
as lines in vector space, 71
number of points, 72
projectivity, 341, 345
proof
analytic versus geometric, 120
parts of, 14
what is a, 10-13, 19, 23, 30, 120
proportion, theory of, 4, 51, 166, 167, 168, 175
pseudorhombicuboctahedron, 462, 468
Ptolemy's theorem, 212
Ptolemy, 296, 297
punched-in icosahedron, 442, 450
pure geometry, 166
pyramid, 226, 438
Pythagoras, 1, 9
Pythagorean field, 142, 145, 151
non-Archimedean, 159, 163
Pythagorean ordered field, 345
Poincaré model over, 372
Pythagorean theorem, 8, 42, 46, 203. See also
(1.47) in Index of Euclid's Propositions
by dissection, 213, 217-219
by trigonometry, 403
in field, 178
using similar triangles, 179
Pythagorean triple, 42, 415

@Q. See rational numbers
quadratic equation, 43, 46, 120, 122, 238
solved by construction, 127
quadratic field extension, 252-256
quadratic formula, 252
quadratic irrational numbers, 126
guadratic polynomial, 245
quadratrix, 223, 224, 260
quadratura circuli, 221-225
quadrilateral. See also Saccheri
quadrilateral
cyclic, 55, 57, 58, 60-62
Lambert, 316
limit, 386
of Hjelmslev, 430
regular, 414
sides parallel, 103
simple closed, 80
quartic equation, 241, 260, 270-280
Descartes's method, 273
quartic polynomial, 285, 287
quintic equation, 277, 283, 287
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quintisection of angle, 277
guotient of line segments, 123

R. See real numbers
RA. See right angle
radian measure of angle, 396, 403, 407
radical axes of three circles, 370
radical axis of two circles, 182
radius of circle, 88, 104
RASS (right-angle-side-side), 16, 37, 103, 111
Ratdolt, Erhard, 261
ratio, 166, 167
extreme and mean, 46, 51
in field, 175
rational Cartesian plane, 89
rational net of points, 426
rational numbers, 30, 89, 118, 136
as ordered field, 137
Cartesian plane over, 143
dyadic, 333, 396
ray, 77, 79, 141
congruence of, 88
limiting parallel, 312
rays
coterminal, 312
real Cartesian plane, 34, 117-127
area in, 40
as categorical model, 70
as complex numbers, 251
as Hilbert plane with (P) and (D), 191
as incidence geometry, 67, 68
as model for axioms, 95
as model for betweenness, 78
congruence in, 87
regular polygons in, 437
unwound circle group in, 327, 333
real Euclidean plane, 343
real line, 78
real number
area as, 166
length as, 166
real numbers, 2, 4, 34, 158. See also real
Cartesian plane
as ordered field, 137
constructible, 242, 259
defined by Dedekind, 167
imply circles meet, 30
in axioms, 166
in Euclid?, 167
not in spirit of Euclid's geometry, 116, 166
unnecessary, 296, 326
used in high school geometry, 118

real roots
of cubic equation, 272, 273
of equations, 271
of polynomial, 247
of quartic equation, 273
rectangle axiom, 162
rectangle, 16, 302, 378
rectifiable circle, 413
rectilineal figure, 196
reductio ad absurdum, 14
reduction mod p, 288
reduction of one problem to another, 348
reflection, 33, 152, 153, 155
in equator, 342
reflections
calculus of, 415, 427-430, 432, 433
equations among, 425
generate rigid motions, 153, 427
in Poincare model, 359
product of, 157
theorem of three, 158, 389
reflexivity, 82
regular pentagon, 49
exists over (), 147
regular polvgon, 241, 250, 437
constructible, 276
regular polvhedron, 435, 442, 443
definition of, 446
regular solids, 435-448
resolvent of cubic equation, 273, 274
reversed orientation, 471, 472
rhombicosidodecahedron, 462
rhombicuboctahedron, 462, 463
rhombus, 16
Riemann integral, 222
Riemann sphere, 342
right angle, 27, 141
definition of, 94
existence, 101
hypothesis of, 307, 311
in semicircle, 60
right angles all equal, 33, 95
right triangle axiom, 301
right triangle, 42, 44
area of, 408, 412
Engel's associated, 410-411, 414, 415
relation among sides and angles, 403, 404, 406
right-angle-side-side. See RASS
rigid motion, 33, 65, 334, 341, 359
definition, 149
generated by reflections, 427
group of, 426, 427
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in 3-space, 471
is product of three reflections, 155
of hyperbolic plane, 392, 401
of polyhedron, 439, 441
reflection, 152, 153, 155, 392
rotation around oo, 392
rotation, 156, 393
translation along a line, 391, 392, 400
translation, 151, 155, 156
rigid motions, 117, 148-158
define congruence, 154
rigidity theorem, 450-455
roots expressedby real radicals, 294
roots of equations, 270
roots of polynomials, 281-284
roots of unity, 251, 288, 290-293
rotation group, 436
of icosahedron, 473-475, 478
of octahedron, 478, 480
of polyhedron, 472
of semiregular polyhedra, 479
of tetrahedron, 471-473
rotation, 33, 151, 155, 304
around oo, 392
around an end, 402
of polygon, 437
of polyhedron, 470
rotations
group of, 155, 156, 327
in Cartesian plane, 156
isomorphic to circle group, 402
of sphere, 478
product of, 157
ruler alone constructions, 185, 344, 345
with fixed circle, 192-194
ruler and compass constructions, 18-26, 112
as quadratic equations, 120, 122
ruler and compass, 2
ruler postulate, 2
ruler, 21
ruler, one-inch, 25
ruler, marked, 241
rusty compass, 25, 26

s-line, 318

s-point, 318

Saccheri quadrilateral, 306-310, 316, 376, 383
associated to triangle, 310, 328, 329

Saccheri, Girolamo, 295, 305, 319

Saccheri-Legendre theorem, 295, 320, 376

Saccheri, theorem of, 309

same area implies same content, 331

same direction of lines, 303
same side, 74
as equivalence relation, 75
sand, geometrical figures in, 56
SAS (side-angle-side), 31, 34
as axiom, 112
Savile, Henry, 304
Scheubel, Johann, 83
School Mathematics Study Group, 31, 166
schoolgirl problem, 72
Schwan, E., 427
screw reflection, 478
secants of circle, 60, 181
segment addition, group of, 423
segment arithmetic, 165-175
segment of circle, 114, 157
segment, 74
segment-connected set, 80, 111, 116, 205, 433
semi-Euclidean plane, 305, 316, 318, 319, 431
Archimedean implies (P), 321
characterization of, 425
definition of, 311
isomorphism of, 432
semielliptic plane, 316
area in, 333
characterization of, 425
definition of, 311
example, 318
impossible if Archimedean, 321
semihyperbolic plane, 316, 372, 431
characterization of, 425
definition of, 311
isomorphism of, 432
measure of area function, 328
semiregular polyhedron, 459-463
semiregular solids, 436
separation, 73
of line, 76
of plane, 74
seven-point plane, 71
Shakespeare, William, 388
Siamese dodecahedron, 457
side of triangle, 74, 79
side-angle-side, 31, 34
as axiom C6, 65, 91, 92
equivalent to ERM, 154
for similar triangles, 178
in Cartesian plane, 148-158
over a field, 117
side-side-side
for similar triangles, 175
from Hilbert's axioms, 99
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side
of 15-gomn, 126
of 16-gon, 126
of 17-gon, 256
of aline, 74
of decagon, 124
of pentagon, 125
of polyhedron, 448
of tetrahedron, 126
sidedness, 73
signed distance, 391
Sim AAA (similar angle-angle-angle), 175
Sim SAS (similar side-angle-side), 178, 181
Sim SSS (similar side-side-side), 177
similar triangles, 51, 52, 53, 165, 166, 167, 175-
186
existence of, 301
in semihyperbolic plane, 302
prove 147, 178
prove 111.35, 180
prove I11.36, 180
simple closed polvgon, 204
simple closed guadrilateral, 80
simple group, 474
simply connected polyhedron, 450
Simson line, 61
Simson's axiom, 300, 302
Simson, Robert, 31, 109, 299
sine function, 124, 126, 184, 403, 405
sines, law of, 185
sinh function, 413
skew field, 132, 133, 140
slope oo, 119
slope of line, 119, 120, 129, 142
8,. See symrmetric group
snub cube, 462, 463, 468, Plate XVII
snub disphenoid, 456, 457, 459, Plate XVIII
snub dodecahedron, 462, 463, Flate XX
S0(3), 475
soccerball, Plate XX
solid angle, 439
solid geometry, 437
solid problem, 260, 279
solvable group, 275
special orthogonal group, 475
specification, 14
spherical geometry, 311, 318, 452, 458, 459
spherical polyvgon, 452
spherical triangle, 443, 458
spherical trigonometry, 443
splitting field, 279, 284, 285, 202

square antiprism, 456
square dipyramid, 459
square root of 2

in field, 132

is irrational, 117
square Toot

in ordered field, 140

of line segment, 123, 171

construction of, 125

in constructions, 242

nested, 124-126
square, 51

as sum of two squares, 198

on side of triangle, 42

with given content, 114
sguares

of equal area, 211

of equal content, 204
squaring of circle, 23, 163, 195, 221-225, 244,

490

in hyperbolic plane, 409, 414
squaring of parabola, 247
5SS (side-side-side), 35
stabilizer subgroup, 473, 474
standard form of irrational numbers, 125, 126
standard model, 88, 90
Staudt, Georg Karl Christian von, 426
Steiner, Jakob, 184
Steinitz, Ernst, 451
steps of construction, 20-22
stereographic projection, 342, 371, 480
straight edge, 18, 21. See also ruler
straight line, 27, 28

definition of, 83
stretched cube, 467, 468, Flate XVIIT
strictly parallel lines, 318
subtraction of figures, 41
sum of squares, 248
sum

of angles, 91

of ends, 390

of line segments, 84, 168
superposition, 2, 31-34, 65, 112, 148, 334

over a field, 117

replaced by axiom C6, 92
supplementary angle, 92, 94
symmetric group, 69, 286, 469-430
symmetry group, 435

dihedral, 470

of antiprism, 479

of icosahedron, 478
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of octahedron, 478

of pentagon, 477

of prism, 479

of tetrahedron, 470, 472

of triangle, 469
symmetry of a figure, 469
symmetry, 54

mirror (see mirror symmetry)

used in proof, 379

Tacquet, Andrea, 295
tangent function addition formula, 192
tangent function, 141, 146, 184, 395, 396, 399,
403, 405, 419
sum formula, 146
tangent line
to horocycle, 402
tangent lines equal, 17
tangent, 237
to circle, 24, 105, 180
to two circles, 26
tanh function, 413
taxicab geometry, 89, 90
tensor product, 232
tetrahedron, 126, 435, 438, 439, 444, 446, 455
rotation group of, 472
symmetry group of, 472
Thabit b. Qurra, 217
Thales, 9
Theaetetus, 1
Theon, 299
Thibaut, Bernhard Friedrich, 304
three circles
mutually orthogonal, 25
mutually tangent, 62
radical axes meet, 182
three reflections theorem, 158, 389
three-point geometry, 67, 68
tiling of plane, 367, 368
Todhunter, 63
tools. See collapsible compass; compass; dividers;
Hilbert's tools; marked ruler; one-inch ruler;
gquadratrix; ruler; rusty compass;
transporter of angles; transporter of
Segments
totally positive element, 147
is sum of squares, 147
totally positive number, 248
totally real field extension, 147
totally real number, 147, 248
transcendence of &, 241, 244

transcendental numbers, 118
transformation, 334
transitive group action, 435
transitivity, 84
translation along a line, 391, 392, 400, 428
translation, 33, 151, 155, 156
transporter of angles, 82, 91, 102
transporter of segments, 52, 102
transversal to parallel lines, 384
transversal to triangle, 180, 311
triangle inequality, 90, 146
triangle. See also altitudes; angle bisectors:
medians; perpendicular bisectors

altitudes meet, 52, 54, 55, 58, 119

angle sum (see angle sum of triangle)

area of, 206, 207

associated Saccheri quadrilateral, 310, 328,

331

by origami, 250

centroid of, 53

circumcenter of, 51

circumscribed circle, 116

construction, given medians, 59

defect of, 311

definition, 74, 196

double of another, 52

Engel's associated, 409-411, 414, 415

equilateral, 19, 184

Euclidean, 311

every, is isosceles, 36

excess of, 333

generalized, 387

given base, angle, and sum of

sides, 26

given three sides, 31, 102, 147

incenter of, 51

inscribed square, 184

isosceles, 35, 46

limit, 317

line parallel to base, 52, 63

midline of, 310, 329

non-Euclidean, 311

of L area, 212

of large area, 332

orthic, 58

orthocenter of, 54

subdivision of, 208

trilimit, 385, 386

with given angles, 366, 412

with no circumscribed circle, 162

with very small angles, 325
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triangles

equiangular are similar, 175

similar, 166, 175-186

used to fill plane, 367, 368

with egual content, 202
triangular dipyramid, 442
triangular dodecahedron, 457
triangular prism, 226
triangular pyramid, 226

right isosceles, 231, 239

volume of, 228, 229
tricapped triangular prism, 456, Flate XVIII
trichotormy, 136, 137, 148, 205
tridiminished icosahedron, 464
trigonometric identity, 403
trigonometry, 184, 237

in hyperbolic plane, 403-415
trilimit triangle, 385, 386, 401
triple angle formula, 266, 271
trisection of angle, 23, 167, 241, 247, 248, 260

by Campanus, 261

by neusis with circle, 269

impossible, 243

in Poincare model, 369

solves cubic equation, 271

with marked ruler, 260

with parabola, 277
trisection of segment, 25

in Poincaré model, 369
truncated cube, 462
truncated cuboctahedron, 462
truncated dodecahedron, 462
truncated icosahedron, 462, Plate XX
truncated icosidodecahedron, 462
truncated octahedron, 462
truncated tetrahedron, 460, Plate XVIT
truth, 28
two-point formula, 67, 129

undefined concept, 27, 41
undefined objects, 66

unicorn, 439

uniform polvhedron, 460

union of figures, 197, 204
uniqueness of regular polyhedra, 441
unit segment, 169

unwound circle group, 327, 333, 492

vector space, 71, 472
Veronese, G., 489
vertex figure of a polyhedron, 443, 451,
455
vertex
of angle, 77
of polyhedron, 438
of ray, 77
of triangle, 74, 79
vertical angles, 38
are congruent, 93
vertical line, 119, 129
virtual circle, 345, 372
Viete, Francois, 264, 266, 347, 491
volume, 195, 226-239
of triangular pyramids, 228, 229
theory of, 230

Wallace, W., 61

Wallis's axiom, 301, 302

Wallis, John, 301

Wantzel, Pierre-Laurent, 490

Wentworth, George A., 63

whole greater than part, 41, 195, 201, 203
Wiirfe, 426

x-axis, 119, 187
Xylander, 281

v-axis, 119, 187
Z. See integers

Z. See de Zolt's axiom
Zorn's lemma, 148
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